Future of charm, strangeness, τ^\pm at LHCb

Miguel Ramos Pernas
on behalf of the LHCb collaboration

Universidade de Santiago de Compostela
miguel.ramos.pernas@cern.ch

HL/HE LHC meeting
Fermilab, April 5, 2018
General aspects for a HL/HE LHCb

Many challenges ahead

- Improve tracking system/trigger to fit in timing constraints
- Maintain or improve the current resolutions (mass, impact parameter, p_T, ...)
- Development of faster simulation methods
Tracking performance

\[\mathcal{L} \times 10 \] is challenging for tracking:

- Expected pile-up \(\sim 50 \)
- Selection of \(b \) and \(c \) hadrons is based on the flight distance
- Requires correct association of production vertex and decay vertices
- 13% mismatching for \(b \)-hadron decays if we keep the Phase-I Upgrade configuration
- With a track hit time resolution of \(\sim 200 \) ps, we recover the current levels

[CERN-LHCC-2017-003]
The VELO RF foil

- The RF foil separates VELO vacuum from primary LHC vacuum
- Isolates sensors from radio-frequency pickup
- Introduces a lot of material right in front of the interaction point
- Increases the resolution on the impact parameter due to multiple scattering
Removal of the VELO RF foil

- A lot of effort has been put on reducing the amount of material

- For charm and τ decays (and partially reconstructed B decays), the impact parameter resolution is crucial

- RF foil removal is risky, but the improvement is very big!

Scenario 1: With RF foil

Scenario 2: No RF foil
Improvements on the trigger

For the Phase-I Upgrade:

- Loose E_T and p_T cuts, increase the efficiencies to study soft processes (charm, strange and τ decays)
- Dynamic mix of inclusive and exclusive lines
- Only the requested information from the event is saved [arXiv:1604.05596]
- More efficient particle identification and reconstruction algorithms
- Efficiencies up to $\sim 90\%$ are possible

For Phase-II...

- Tighter throughput constraint
- Maybe need to restructure the trigger
- Usage of GPUs, FPGAs, etc... for simple processes
Interest on charm decays

- Charmed hadrons provide the only way to study CP violation (CPV) with up-type quarks
- After the Phase-II Upgrade, LHCb will have recorded the largest sample of charm hadrons ever
- This would constitute over 2 orders of magnitude of what is expected for Belle II in $D^0 \to h^+h^-$, $D^0 \to K^0_S h^+h^-$ ($h = \pi, K$)
- To study CPV, huge statistics needed for both real data and simulated samples

$$A_{\text{CP}} \equiv \frac{\Gamma_{D^0 \to f} - \Gamma_{\bar{D}^0 \to \bar{f}}}{\Gamma_{D^0 \to f} + \Gamma_{\bar{D}^0 \to \bar{f}}}$$

$$D_1 = p \left| D^0 \right\rangle - q \left| \bar{D}^0 \right\rangle$$

$$D_2 = p \left| D^0 \right\rangle + q \left| \bar{D}^0 \right\rangle$$

$$\phi \equiv \arg\left(\frac{q}{p}\right)$$

$$x \equiv \frac{m_1 - m_2}{\Gamma}$$

$$y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

$m_i \Rightarrow$ mass of D_i

$\Gamma_i \Rightarrow$ decay width of D_i
Direct CPV

- Direct CPV is not so cleanly predicted, smaller than $\sim 10^{-3}$ [arXiv:1608.06528], close to the current sensitivity.

- LHCb has the best measurements of $D^0 \to K^+ K^-$ and $D^0 \to \pi^+ \pi^-$ asymmetries:

 \[
 A_{CP}(D^0 \to K^+ K^-) = (0.04 \pm 0.12 \pm 0.10)\%
 \]

 \[
 A_{CP}(D^0 \to \pi^+ \pi^-) = (0.07 \pm 0.14 \pm 0.11)\%
 \]

- The main systematic comes from the statistics of the control samples, like $D^+ \to K_S^0 \pi^+$

For Phase-II Upgrade

\[
\sigma(A_{CP}^{\pi\pi} - A_{CP}^{KK}) \sim 10^{-5}
\]

Opportunity to measure CP asymmetries with charmed baryons:

- Λ_c^+ sensitivity $\sigma(A_{CP}) \sim 10^{-4}$
- Ξ_{cc}^{++} sensitivity $\sigma(A_{CP}) \sim 10^{-3}$
Indirect CPV

- CPV in mixing-related phenomena are predicted to be $\sim 10^{-4}$ or less [arXiv:1510.05797]
- Direct access to CPV observables like x, y, $|q/p|$ and ϕ
- Current results are limited by statistics
- Improving the K_S^0 reconstruction would help to study $D^0 \rightarrow K_S^0 h^+ h^-$

For Phase-II, the expectation is to bring these parameters down to:

$$\sigma(x) \sim 10^{-5} \quad \sigma(y) \sim 10^{-5}$$
$$\sigma(|q/p|) \sim 10^{-3} \quad \sigma(\phi) \sim 10^{-3}(^\circ)$$

No-mixing $\Rightarrow x = y = 0$
No CP violation $\Rightarrow \phi = 0^\circ$ and $|q/p| = 1$

[CERN-LHCC-2017-003]
Rare decays

- Rare charm decays constitute a unique probe for New Physics in the up-quark sector
- Relatively unexplored
- Higher-order diagrams are very suppressed
- b-anomalies make progress on studying $c \rightarrow u$ more pressing
Rare decays

\[D^0 \rightarrow h^+ h^- \mu^+ \mu^- \]

- Observed the first signal of leptonic decays of \(c \) mesons \[\text{[Phys. Rev. Lett. 119, 181805]} \]
- In Phase-II, high-statistics amplitude and angular analysis (disentangle between SD, LD)

\[D^0 \rightarrow \mu^+ \mu^- \]

- Expectation for Phase-II:
 \[\mathcal{B}(D^0 \rightarrow \mu^+ \mu^-) \sim 10^{-10} \]
- Particle identification is crucial to reduce the background from \(D^0 \rightarrow h^+ h^- \)

Searches also for \(D \rightarrow hll, \Lambda_c^+ \rightarrow p\mu^+ \mu^-, \ldots \)

Possibility to explore the electron modes starting in Run-II

With an improved ECAL, search for radiative charm decays?
The magnet stations

LHCb dipole magnet

Magnet Station

low-momentum tracker

- D^0 mesons are usually tagged using $D^{*+} \rightarrow D^0 \pi^+_{soft}$

- The track of the π^+_{soft} has a high chance of running outside the detector

- Aim to place tracking stations in the magnet region

- Gain of 21% for $D^{*+} \rightarrow D^0(K\pi)\pi^+_{soft}$

- Improvements also for $R(D^*)$, Heavy Ion, ...
Strange decays at LHCb

- Huge production of strange hadrons at LHCb
- Larger lifetimes
- $\mathcal{O}(10^{13})/\text{fb}^{-1}$ K_S^0 decay inside the VELO
- Efficiencies have been proved to be high enough already in 2011, using the $K_S^0 \rightarrow \mu^+\mu^-$ analysis as a benchmark
- Many possibilities to study: K_S^0, Λ^0, Σ^+, Ξ^-, ...
- Currently developing tracking, particle identification and tagging algorithms
$K^0_S \rightarrow \mu^+ \mu^-$

- Flavour-changing neutral current (FCNC) transition

- Dominated by long distance contributions through $K^0 \rightarrow \gamma\gamma$

- $\mathcal{B} \left(K^0_S \rightarrow \mu^+ \mu^- \right)$ helps to kill models with leptoquarks [arXiv:1712.01295], or supersymmetric contributions [arXiv:1711.11030], [arXiv:1712.04959]

- Study of the interference between $K^0_L \rightarrow \mu^+ \mu^-$ and $K^0_S \rightarrow \mu^+ \mu^-$ allows to determine $\text{sign}(A_{L\gamma\gamma}^{\mu})$:

\[
\mathcal{B} \left(K^0_S \rightarrow \mu^+ \mu^- \right) = (5.18 \pm 1.50 \pm 0.02) \times 10^{-12}
\]

\[
\mathcal{B} \left(K^0_L \rightarrow \mu^+ \mu^- \right) = \begin{cases}
(6.85 \pm 0.80 \pm 0.06) \times 10^{-9} & \text{if } A_{L\gamma\gamma}^{\mu} > 0 \\
(8.11 \pm 1.49 \pm 0.13) \times 10^{-9} & \text{if } A_{L\gamma\gamma}^{\mu} < 0
\end{cases}
\]

\[
A_{L\gamma\gamma}^{\mu} = \text{sign} \left(\frac{A(K^0_L \rightarrow \gamma\gamma)}{A(K^0_L \rightarrow (\pi^0)^* \rightarrow \gamma\gamma)} \right)
\]

$K^0_S \rightarrow \mu^+ \mu^-$ invariant mass

- Backgrounds are currently under control

- $K^0_S \rightarrow \pi^+ \pi^-$ with the two pions misidentified as muons dominates the spectrum

- Benefit from improvements on muon identification at low-p_T

- Currently we have a very good resolution around the K^0_S mass ($\sim 4\text{MeV}/c^2$). Maintaining it is completely necessary.
At high luminosity, another enemy appears...

- $K^0_L \rightarrow \mu^+ \mu^-$ is an irreducible background
 $(B = (5.8 \pm 0.6 \pm 0.4) \times 10^{-9}$ [Phys. Rev. Lett. 63, 2185])

- For Run-I, $B_{\text{eff}} \left(K^0_L \rightarrow \mu^+ \mu^- \right)$ was out of the sensitivity $\sim 10^{-11}$

- With 300 fb^{-1}, both branching fractions will be of the same order of magnitude

- Need to define a strategy to differentiate $K^0_S \leftrightarrow K^0_L$

- Having a good proper time resolution is crucial!

Now we are here!

$K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$

- SM prediction of $K_L^0 \rightarrow \pi^0 \mu^+ \mu^-$
 depends on the measurement of
 \[\mathcal{B}(K_S^0 \rightarrow \pi^0 \mu^+ \mu^-) = 2.9^{+1.5}_{-1.2} \times 10^{-9} \]

- Current kaon experiments do not expect to improve such measurement

- A sensitivity study was performed at LHCb

- Low π^0 reconstruction efficiency at LHCb

- The K_S^0 mass does not depend too much on the information from the π^0

Two possible strategies

- **FULL**: fully reconstruct the candidate
- **PARTIAL**: omit the π^0 reconstruction

[CERN-LHCb-PUB-2016-017]
$K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$ prospects

- Beating the NA48 measurement [Phys. Lett. B599 (2004) 197] is possible in the upgrade $\mathcal{L}_{\text{eff}} > 5$ fb$^{-1}$

- Best strategy omitting the π^0 reconstruction

- Maybe benefit from an upgraded ECAL
Other strange friends

There are many other interesting studies that can be done at LHCb:

- $K^0_S \rightarrow x^+x^-l^+l^-$: highly suppressed in the SM ($\sim 10^{-14}$ for muons)

- $K^+ \rightarrow \pi^+\mu^+\mu^-$: maybe competitive with NA62 (LFU)

- Semileptonic/rare Hyperon Decays ($\Lambda^0 \rightarrow p\mu^-\bar{\nu}$, $\Sigma^+ \rightarrow p\mu^+\mu^-$, ...)

- $K^0_S \rightarrow \pi^+\mu^-\bar{\nu}$: no measurement at present (V_{us}, CPT, LFU)

For the moment, everything very preliminary in most cases:

- No dedicated trigger lines for SHD or $K^0_S \rightarrow \pi^+\mu^-\bar{\nu}$ ($\mathcal{B} \sim 10^{-4}$)

- Apart from $\Sigma^+ \rightarrow p\mu^+\mu^-$, nothing published so far, set benchmarks for Run-II

- Tracking is challenging for K^+ studies (flight distance $\sim m$)
τ decays

• LHCb was the first experiment to search for LFV τ decays on a hadron collider

• Inclusive production of τ leptons, mainly from b and c hadron decays

• Calibration and normalization channel $D_s^- \rightarrow \phi(\mu^+\mu^-)\pi^-$
\[\tau^- \rightarrow \mu^+ \mu^- \mu^- \]

- Getting close to B-factories (ongoing studies with Run-II data samples)

- With \(\sim 300 \text{ fb}^{-1} \), we expect \(B(\tau^- \rightarrow \mu^+ \mu^- \mu^-) < 3 \times 10^{-9} \), similar to what is expected for Belle 2 with 50 \(\text{ab}^{-1} \)

- Irreducible background of \(D_s^- \rightarrow \eta(\mu^+ \mu^- \gamma)\mu^- \bar{\nu}_\mu \), reduced with cuts in \(m_{\mu^+ \mu^-} \)

- Benefit from any improvement on the ECAL
τ^− → \bar{p}\mu^+\mu^- and τ^− → p\mu^−\mu^−

- Test for models where \(|\Delta(B - L)| = 0, 2 \)
- Analysis done using the data sample from 2011 (no update since then)
- Clean signature, no expected peaking backgrounds
- We might expect a factor of 20 of improvement using the full Run-(I - V) samples

\[B(\tau^- \rightarrow \bar{p}\mu^+\mu^-) < 3.3 \times 10^{-7} \]

\[B(\tau^- \rightarrow p\mu^-\mu^-) < 4.4 \times 10^{-7} \]
Conclusions

• LHCb has a big power of adaptation to new fields

• Tracking and trigger improvements are crucial:
 - Tracking efficiency
 - Ghost removal
 - Low-p_T reconstruction
 - Full software trigger

• An upgraded ECAL allows to better control backgrounds and use other normalization channels

• Larger samples of both real and simulated data allows approaching SM predictions for CPV in charm decays

• New possibilities to study strange decays at LHCb, reach SM prediction for $K^0_S \rightarrow \mu^+\mu^-$

• Expected a very big improvement on τ decays, competitive with B-factories
BACKUP
The LHCb detector in Phase-II Upgrade

Future of charm, strangeness, τ^{\pm} at LHCb

(CERN-LHCC-2017-003)

Miguel Ramos Pernas

(HL/HE LHC meeting, Fermilab, April 5, 2018)
Future of charm, strangeness, τ^{\pm} at LHCb

(HL/HE LHC meeting, Fermilab, April 5, 2018)
Track types at LHCb

- VELO track
- Downstream track
- Long track
- Upstream track
- T track

Future of charm, strangeness, τ^\pm at LHCb

(Miguel Ramos Pernas, HL/HE LHC meeting, Fermilab, April 5, 2018)
Trigger definitions

- **Signal candidate tracks (S)**
- **The rest of the event (R)**

Trigger?
- **yes**
 - **TOS**
 - **Trigger?**
 - **yes**
 - **TIS**
 - **no**
 - **Trigger?**
 - **yes**
 - **TOS**
 - **Trigger?**
 - **yes**
 - **TIS**
 - **no**
 - **S+R**
 - **Trigger?**
 - **yes**
 - **TOS**
 - **Trigger?**
 - **yes**
 - **TIS**

Where:
- \(a = N^{TRIG} - N^{TIS} - N^{TOS} + N^{TISTOS} \)
- \(b = N^{TOS} - N^{TISTOS} \)
- \(c = N^{TIS} - N^{TISTOS} \)
- \(d = N^{TISTOS} \)
LHCb trigger diagrams

LHCb 2012 Trigger Diagram
- 40 MHz bunch crossing rate
- L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures
- 450 kHz h^\pm
- 400 kHz $\mu/\mu\mu$
- 150 kHz e/γ
- Software High Level Trigger
 - 29000 Logical CPU cores
 - Offline reconstruction tuned to trigger time constraints
 - Mixture of exclusive and inclusive selection algorithms
- 5 kHz (0.3 GB/s) to storage
 - 2 kHz Inclusive Topological
 - 2 kHz Inclusive/Exclusive Charm
 - 1 kHz Muon and DiMuon
- 1 kHz Charm
- 2 kHz Inclusive/Exclusive Muon

LHCb 2015 Trigger Diagram
- 40 MHz bunch crossing rate
- L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures
- 450 kHz h^\pm
- 400 kHz $\mu/\mu\mu$
- 150 kHz e/γ
- Software High Level Trigger
 - Partial event reconstruction, select displaced tracks/vertices and dimuons
- Full offline-like event selection, mixture of inclusive and exclusive triggers
- 12.5 kHz (0.6 GB/s) to storage

LHCb Upgrade Trigger Diagram
- 30 MHz inelastic event rate (full rate event building)
- Software High Level Trigger
 - 2-5 GB/s to storage
 - Full event reconstruction, inclusive and exclusive kinematic/geometric selections
 - Add offline precision particle identification and track quality information to selections
 - Output full event information for inclusive triggers, trigger candidates and related primary vertices for exclusive triggers

Buffer events to disk, perform online detector calibration and alignment

Miguel Ramos Pernas
Future of charm, strangeness, τ^{\pm} at LHCb
(HL/HE LHC meeting, Fermilab, April 5, 2018)
$D^0 \to \mu^+ \mu^-$ mass distributions

![Graph](image)

Miguel Ramos Pernas
Future of charm, strangeness, τ^\pm at LHCb
(HL/HE LHC meeting, Fermilab, April 5, 2018)
\[\Lambda_c^+ \rightarrow pK^+K^- \text{ and } \Lambda_c^+ \rightarrow p\pi^+\pi^- \]
The di-muon triggers for Run-II

<table>
<thead>
<tr>
<th></th>
<th>$K_S^0 \rightarrow \mu^+ \mu^-$</th>
<th>$K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L0</td>
<td>0.361 \pm 0.004</td>
<td>0.344 \pm 0.009</td>
</tr>
<tr>
<td>HLT1/L0</td>
<td>0.699 \pm 0.007</td>
<td>0.705 \pm 0.015</td>
</tr>
<tr>
<td>HLT1/L0 (old)</td>
<td>0.274 \pm 0.006</td>
<td>0.299 \pm 0.015</td>
</tr>
<tr>
<td>HLT2/HLT1</td>
<td>0.9898 \pm 0.0017</td>
<td>0.983 \pm 0.005</td>
</tr>
<tr>
<td>HLT2/HLT1 (old)</td>
<td>0.293 \pm 0.013</td>
<td>0.26 \pm 0.03</td>
</tr>
<tr>
<td>global</td>
<td>0.250 \pm 0.004</td>
<td>0.238 \pm 0.008</td>
</tr>
<tr>
<td>global (old)</td>
<td>0.0290 \pm 0.0015</td>
<td>0.026 \pm 0.003</td>
</tr>
</tbody>
</table>

green: trigger with new lines
red: trigger without new lines

- Big increase on the efficiencies: a factor ~ 2.4 for HLT1 and ~ 3.5 for HLT2
- Total efficiency increased by a factor ~ 10
$K^0_S \rightarrow \pi^0 \mu^+ \mu^-$

$\mathcal{B} (K^0_L \rightarrow \pi^0 \mu^+ \mu^-)$ has a variation of ~ 1 order of magnitude in models with extra dimensions.

$\mathcal{B} (K^0_L \rightarrow \pi^0 l^+ l^-)_{SM} = \left(C^l_{\text{dir}} \pm C^l_{\text{int}} |a_S| + C^l_{\text{mix}} |a_S|^2 + C^l_{\gamma\gamma} + C^l_{\gamma S} \right) \times 10^{-12}$

$|a_S| = 1.2 \pm 0.2$ dominates the theoretical uncertainty. Comes from the measurements of $\mathcal{B} (K^0_S \rightarrow \pi^0 l^+ l^-)$.

Large uncertainties on $\mathcal{B} (K^0_S \rightarrow \pi^0 \mu^+ \mu^-) = 2.9^{+1.5}_{-1.2} \times 10^{-9}$ (NA48) [Phys. Lett. B599 (2004) 197]

Randall-Sundrum model

[JHEP 1009:017,2010]