ATLAS results on searches for exotic new particles

Sara Alderweireldt
on behalf of the ATLAS Collaboration

Aspen 2018 – The Particle Frontier
Aspen, CO
March 28, 2018
Introduction

- Many BSM theories:
 - Grand Unification Theory
 - Sequential Standard Model
 - Extra dimensions
 - Dark sector extensions
 - Gravitons
 - Two-Higgs-doublet model
 - ...

- Many final states and many regions of phase space to consider
 - Search for any deviation from the SM prediction

- Pushing limits both at high and low mass

- 2015+2016 dataset: 36.1 fb⁻¹

ATLAS Exotics Searches - 95% CL Upper Exclusion Limits

Status: July 2017

<table>
<thead>
<tr>
<th>Model</th>
<th>f</th>
<th>y</th>
<th>Jets</th>
<th>E_{DM} [TeV]</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQ</td>
<td>1/0</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgs</td>
<td>1/0</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector</td>
<td>1/0</td>
<td>0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference

- ATLAS-CONF-2016-030
- ATLAS-CONF-2016-070
- ATLAS-CONF-2017-027
- ATLAS-CONF-2017-055
- ATLAS-CONF-2017-051

ATLAS Online Luminosity

<table>
<thead>
<tr>
<th>Year</th>
<th>Luminosity [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>50</td>
</tr>
<tr>
<td>2012</td>
<td>50</td>
</tr>
<tr>
<td>2015</td>
<td>50</td>
</tr>
<tr>
<td>2016</td>
<td>50</td>
</tr>
<tr>
<td>2017</td>
<td>50</td>
</tr>
</tbody>
</table>

DM Simplified Exclusions

- Dijet
- Dijet 8 TeV
- Dijet 13 TeV
- Dijet + ISR
- Dijet TLA
- Dijet + ISR
- E_{miss} + jet
- E_{miss} + Z
- E_{miss} + W
<table>
<thead>
<tr>
<th>Search</th>
<th>Reaction</th>
<th>ATLAS publication</th>
<th>Search type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for Higgs decays to beyond the standard model light gauge</td>
<td>$H(125) \rightarrow XX \rightarrow 4l$</td>
<td>EXOT-2016-22</td>
<td>leptonic</td>
</tr>
<tr>
<td>bosons in four-lepton events with the ATLAS detector at $\sqrt{s} = 13$ TeV</td>
<td></td>
<td></td>
<td>low mass</td>
</tr>
<tr>
<td>Search for doubly charged Higgs boson production in multi-lepton</td>
<td>$pp \rightarrow H^{++} H^{--}$</td>
<td>EXOT-2016-07</td>
<td>leptonic</td>
</tr>
<tr>
<td>final states with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV</td>
<td>$\rightarrow l^+ l^- \ell^+ \ell^-$</td>
<td></td>
<td>high mass</td>
</tr>
<tr>
<td>Search for heavy resonances decaying into a W or Z boson and a Higgs</td>
<td>$V' \rightarrow VH$</td>
<td>EXOT-2016-10</td>
<td>semi-</td>
</tr>
<tr>
<td>boson in final states with leptons and b-jets in 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV</td>
<td>$\rightarrow \ell \nu / \ell l / \nu \nu$ bb</td>
<td></td>
<td>leptonic</td>
</tr>
<tr>
<td>pp collisions with the ATLAS detector</td>
<td></td>
<td></td>
<td>intermediate/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>high mass</td>
</tr>
<tr>
<td>Search for WW/WZ resonance production in lvqq final states in pp</td>
<td>$X \rightarrow WV \rightarrow lvqq$</td>
<td>EXOT-2016-28</td>
<td>semi-</td>
</tr>
<tr>
<td>collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td>leptonic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>intermediate/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>high mass</td>
</tr>
<tr>
<td>Search for light resonances decaying to boosted quark pairs and</td>
<td>$ISR(\gamma/j) + boosted jj$</td>
<td>EXOT-2017-01</td>
<td>hadronic</td>
</tr>
<tr>
<td>produced in association with a photon or a jet in proton–proton</td>
<td></td>
<td></td>
<td>low mass</td>
</tr>
<tr>
<td>collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for dark matter and other new phenomena in events with an</td>
<td>$jet + E_{T}^{miss}$</td>
<td>EXOT-2016-27</td>
<td>hadronic</td>
</tr>
<tr>
<td>energetic jet and large missing transverse momentum using the</td>
<td></td>
<td></td>
<td>high mass</td>
</tr>
<tr>
<td>ATLAS detector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for pair production of up-type vector-like quarks and 4t-quark</td>
<td>$T \bar{T} \rightarrow Ht + X$</td>
<td>EXOT-2016-13</td>
<td>hadronic</td>
</tr>
<tr>
<td>events in final states with multiple b-jets with the ATLAS detector</td>
<td></td>
<td></td>
<td>high mass</td>
</tr>
<tr>
<td>Search for $W' \rightarrow tb$ decays in the hadronic final state</td>
<td>$W' \rightarrow tb$</td>
<td>EXOT-2017-02</td>
<td>hadronic</td>
</tr>
<tr>
<td>using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td>high mass</td>
</tr>
<tr>
<td>A search for high-mass resonances decaying to $\tau\nu$ in pp</td>
<td>$W' \rightarrow \tau\nu$</td>
<td>EXOT-2017-06</td>
<td>hadronic</td>
</tr>
<tr>
<td>collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td>high mass</td>
</tr>
</tbody>
</table>
Overview

<table>
<thead>
<tr>
<th>Search</th>
<th>Expression</th>
<th>Reference</th>
<th>Mode</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for Higgs decays to beyond the standard model light gauge</td>
<td>$H(125) \rightarrow XX \rightarrow 4l$</td>
<td>EXOT-2016-22</td>
<td>leptonic</td>
<td>low mass</td>
</tr>
<tr>
<td>bosons in four-lepton events with the ATLAS detector at $\sqrt{s} = 13$ TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for doubly charged Higgs boson production in multi-lepton</td>
<td>$pp \rightarrow H^{++}H^{--}$</td>
<td>EXOT-2016-07</td>
<td>leptonic</td>
<td>high mass</td>
</tr>
<tr>
<td>final states with the ATLAS detector using proton–proton collisions at</td>
<td>$\rightarrow l^+l^+\ell^-\ell^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{s} = 13$ TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for heavy resonances decaying into a W or Z boson and a Higgs</td>
<td>$V' \rightarrow VH$</td>
<td>EXOT-2016-10</td>
<td>semi-leptonic</td>
<td>intermediate/high mass</td>
</tr>
<tr>
<td>boson in final states with leptons and b-jets in 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV</td>
<td>$\rightarrow (l\nu/l\ell/\nu \nu)bb$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pp collisions with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for WW/WZ resonance production in lvqq final states in pp</td>
<td>$X \rightarrow WV \rightarrow lvqq$</td>
<td>EXOT-2016-28</td>
<td>semi-leptonic</td>
<td>intermediate/high mass</td>
</tr>
<tr>
<td>collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for light resonances decaying to boosted quark pairs and</td>
<td>$ISR(\gamma/j)$ + boosted jj</td>
<td>EXOT-2017-01</td>
<td>hadronic</td>
<td>low mass</td>
</tr>
<tr>
<td>produced in association with a photon or a jet in proton–proton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for dark matter and other new phenomena in events with an</td>
<td>$jet + E_{T}^{miss}$</td>
<td>EXOT-2016-27</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>energetic jet and large missing transverse momentum using the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for pair production of up-type vector-like quarks and 4t-quark</td>
<td>$T\overline{T} \rightarrow Ht + X$</td>
<td>EXOT-2016-13</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>events in final states with multiple b-jets with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for $W' \rightarrow tb$ decays in the hadronic final state</td>
<td>$W' \rightarrow tb$</td>
<td>EXOT-2017-02</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A search for high-mass resonances decaying to $\tau\nu$ in pp</td>
<td>$W' \rightarrow \tau\nu$</td>
<td>EXOT-2017-06</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Higgs decays to light bosons \(H(125) \rightarrow XX \rightarrow 4l \)

- **motivation**: higgs portal models, hidden sectors, dark matter
 → setting upper limits on the Higgs boson branching ratio to BSM particles

- three analysis regions targetting different processes
 - \(H(125) \rightarrow ZX \rightarrow 4l \) (2l2e and 2l2\(\mu \))
 - \(H(125) \rightarrow XX \rightarrow 4l \), \(m(X) \in [15,60] \) GeV (4e, 2e2\(\mu \) and 4\(\mu \))
 - \(H(125) \rightarrow XX \rightarrow 4l \), \(m(X) \in [1,15] \) GeV (4\(\mu \))

- \(X \) is new vector boson \(Z_d \) or pseudoscalar \(a \) with low mass
Higgs decays to light bosons $H(125) \rightarrow XX \rightarrow 4l$

- set 95% CL upper limits on the fiducial cross section for $H \rightarrow ZX \rightarrow 4l$ & $H \rightarrow XX \rightarrow 4l$ (model independent)
- upper limits are applicable to any model with $H(125)$ decays to 4 leptons via two intermediate, on-shell, narrow, promptly-decaying bosons

EXOT-2016-22

S. Alderweireldt ATLAS results on searches for exotic new particles (28/Mar 2018)
Doubly Charged Higgs \(pp \rightarrow H^{++}H^{--} \rightarrow l^+l^-l^+l^- \)

- dedicated 2-, 3-, and 4-lepton channels to optimize signal acceptance
- fit invariant mass
 - invariant mass of same-charge lepton pair in 2- and 3-lepton channels
 - average mass in 4-lepton channel
- dominant systematic uncertainties
 - fake leptons
 - charge misidentification
 - background estimation

S. Alderweireldt

ATLAS results on searches for exotic new particles (28/Mar 2018)
Doubly Charged Higgs

\[pp \rightarrow H^{++} H^{--} \rightarrow l^+ l^- l^- \]

- set lower limit on \(m(H^{\pm\pm}) \) at 95% CL
- \(B(H^{\pm\pm} \rightarrow e^+ e^-) + B(H^{\pm\pm} \rightarrow e^+ \mu^-) + B(H^{\pm\pm} \rightarrow \mu^+ \mu^-) = B(H^{\pm\pm} \rightarrow l^+ l^-) \)
- mass limit derived for all combinations of the partial branching ratios
 - lower limit above 770 (450) GeV for \(B(H^{\pm\pm} \rightarrow l^+ l^-) = 100(10)\% \) for \(H_L^{\pm\pm} \)
 - lower limit above 670 (320) GeV for \(B(H^{\pm\pm} \rightarrow l^+ l^-) = 100(10)\% \) for \(H_R^{\pm\pm} \)
Doubly Charged Higgs

\[pp \rightarrow H^{++} H^{--} \rightarrow \ell^{+} \ell^{+} \ell^{-} \ell^{-} \]

- the muon channel is the most powerful, but the differences are small
- minimum limit as a function of \(B(H^{\pm \pm} \rightarrow l^{\pm} l^{\pm}) \)
- limits derived for \(H^{\pm \pm}_L \) and \(H^{\pm \pm}_R \)
 - lower limit above 770 (450) GeV for \(B(H^{\pm \pm} \rightarrow l^{\pm} l^{\pm}) = 100(10)\% \) for \(H^{\pm \pm}_L \)
 - lower limit above 670 (320) GeV for \(B(H^{\pm \pm} \rightarrow l^{\pm} l^{\pm}) = 100(10)\% \) for \(H^{\pm \pm}_R \)
| Search for Higgs decays to beyond the standard model light gauge bosons in **four-lepton events** with the ATLAS detector at $\sqrt{s} = 13$ TeV | $H(125) \rightarrow XX \rightarrow 4l$ | EXOT-2016-22 | leptonic | low mass |
| Search for doubly charged Higgs boson production in **multi-lepton final states** with the ATLAS detector using proton–proton collisions at $\sqrt{s} = 13$ TeV | $pp \rightarrow H^{++}H^{--}
\rightarrow l^+l^+\nu\nu$I | EXOT-2016-07 | leptonic | high mass |
| Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with **leptons and b-jets** in 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector | $V' \rightarrow VH
\rightarrow (l\nu/l\nu/\nu\nu)bb$ | EXOT-2016-10 | semi-leptonic | intermediate/high mass |
| Search for WW/WZ resonance production in **lvqq final states** in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector | $X \rightarrow WV \rightarrow lvqq$ | EXOT-2016-28 | semi-leptonic | intermediate/high mass |
| Search for light resonances decaying to **boosted quark pairs** and produced in association with a photon or a jet in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector | $ISR(\gamma/j) + boosted jj$ | EXOT-2017-01 | hadronic | low mass |
| Search for dark matter and other new phenomena in events with an **energetic jet and large missing transverse momentum** using the ATLAS detector | jet + E_T^{miss} | EXOT-2016-27 | hadronic | high mass |
| Search for pair production of up-type vector-like quarks and 4t-quark events in **final states with multiple b-jets** with the ATLAS detector | $T\bar{T} \rightarrow Ht + X$ | EXOT-2016-13 | hadronic | high mass |
| Search for **$W' \rightarrow tb$ decays in the hadronic final state** using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector | $W' \rightarrow tb$ | EXOT-2017-02 | hadronic | high mass |
| A search for high-mass resonances **decaying to $\tau\nu$** in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector | $W' \rightarrow \tau\nu$ | EXOT-2017-06 | hadronic | high mass |
Heavy resonance \rightarrow VH in semi-leptonic decays

$W'/Z'/ggF \ A/\bbA \rightarrow \ VH \rightarrow (l\nu/ll/\nu\nu)\bb$

- **motivation:** heavy resonances, 2HDM, heavy vector triplets, ...

- analysis setup using dedicated categories
 - 0-2 lepton channels
 - resolved or merged bb regimes (small- and large-R jets)
 - various multiplicities of main and additional b-jets

- reconstructed resonance mass dependent on channel: m_{Vh} and $m_{T,Vh}$

![Graphs showing data and backgrounds for different channels and mass distributions.](image)

- resolved, 1 lep, 2+ jets, 1 b-tag
- resolved, 2 lep, 2+ jets, 2 b-tags
- merged, 0 lep, 1+ large-R jet, 2+0 b-tags

ATLAS results on searches for exotic new particles (28/Mar 2018)
Heavy resonance → VH in semi-leptonic decays

$W'/Z'/ggF \ A/\bb A \rightarrow VH \rightarrow (l\nu/ll/\nu\nu)\bb$

- 95% CL upper limits for $Z'\rightarrow Zh$ & $W'\rightarrow Wh$ production
- observed exclusion contours in the HVT parameter space
- 95% CL upper limits for $A\rightarrow Zh$ with $h\rightarrow \bb$
- interpretations following various models available in the paper
Heavy resonance → WV in semi leptonic decays

\[X \rightarrow WV \rightarrow lvqq \]

- **motivation:** composite H, extra dimensions, heavy vector triplets, ...
- **analysis using dedicated categorization**
 - merged (lvJ) or resolved (lvjj) quark pair
 - low- or high purity boson tagging (D\(_2\))
 - WW or WZ signal
 - DY or VBF production

![Resolved SR (WW)](image1)

![Resolved SR (WZ)](image2)

![Resolved CR](image3)

![Merged CR](image4)

![D\(_2\) variable](image5)
Heavy resonance \rightarrow WV in semi leptonic decays

$X \rightarrow WV \rightarrow l\nu qq$

- **motivation:** composite H, extra dimensions, heavy vector triplets, ...
- **analysis using dedicated categorization**
 - merged (lvj) or resolved (lvjj) quark pair
 - low- or high purity boson tagging (D2)
 - WW or WZ signal
 - DY or VBF production
- **perform simultaneous binned ML fit to m(WV) distributions**

Data

- merged, VBF, WW, high-purity
- merged, ggF, WZ, low-purity
- resolved, VBF, WW

S. Alderweireldt

ATLAS results on searches for exotic new particles (28/Mar 2018)
Heavy resonance \rightarrow WV in semi-leptonic decays

$X \rightarrow WV \rightarrow l\nu qq$

- 95% CL upper limits for various models; more in the paper
- largest excess 2.7σ local

VBF, HVT model Z'

VBF, Heavy-scalar model

ggF, HVT model W'

ggF, graviton model
<table>
<thead>
<tr>
<th>Overview</th>
<th>Formula</th>
<th>Reference</th>
<th>Type</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for Higgs decays to beyond the standard model light gauge</td>
<td>$H(125) \rightarrow XX \rightarrow 4l$</td>
<td>EXOT-2016-22</td>
<td>leptonic</td>
<td>low mass</td>
</tr>
<tr>
<td>bosons in four-lepton events with the ATLAS detector at $\sqrt{s} = 13$ TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Search for doubly charged Higgs boson production in multi-lepton</td>
<td>$pp \rightarrow H^{++} H^{--}$</td>
<td>EXOT-2016-07</td>
<td>leptonic</td>
<td>high mass</td>
</tr>
<tr>
<td>final states** with the ATLAS detector using proton–proton collisions at</td>
<td>$\rightarrow l^+ l^+ l^- l^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sqrt{s} = 13$ TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for heavy resonances decaying into a W or Z boson and a Higgs</td>
<td>$V' \rightarrow VH$</td>
<td>EXOT-2016-10</td>
<td>semi-</td>
<td>intermediate/high mass</td>
</tr>
<tr>
<td>boson in final states with leptons and b-jets in 36 fb$^{-1}$ of $\sqrt{s} = 13$ TeV</td>
<td>$\rightarrow (l\nu/ll/\nu\nu) bb$</td>
<td></td>
<td>leptonically</td>
<td></td>
</tr>
<tr>
<td>Search for WW/WZ resonance production in lvqq final states in pp</td>
<td>$X \rightarrow WV \rightarrow lvqq$</td>
<td>EXOT-2016-28</td>
<td>semi-</td>
<td>intermediate/high mass</td>
</tr>
<tr>
<td>collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td>leptonically</td>
<td></td>
</tr>
<tr>
<td>Search for light resonances decaying to boosted quark pairs and pro-</td>
<td>$ISR(\gamma/j) + boosted jj$</td>
<td>EXOT-2017-01</td>
<td>hadronic</td>
<td>low mass</td>
</tr>
<tr>
<td>duced in association with a photon or a jet in proton–proton collisions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for dark matter and other new phenomena in events with an</td>
<td>$jet + E_{T}^{miss}$</td>
<td>EXOT-2016-27</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>energetic jet and large missing transverse momentum using the ATLAS de-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for pair production of up-type vector-like quarks and 4t-quark</td>
<td>$T\bar{T} \rightarrow Ht + X$</td>
<td>EXOT-2016-13</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>events in final states with multiple b-jets with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search for $W' \rightarrow tb$ decays in the hadronic final state</td>
<td>$W' \rightarrow tb$</td>
<td>EXOT-2017-02</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A search for high-mass resonances decaying to $\tau\nu$ in pp collis-</td>
<td>$W' \rightarrow \tau\nu$</td>
<td>EXOT-2017-06</td>
<td>hadronic</td>
<td>high mass</td>
</tr>
<tr>
<td>sions at $\sqrt{s} = 13$ TeV with the ATLAS detector</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Light resonances decaying to boosted quark pairs

- **motivation:** many models with mediators coupling to quarks & gluons
 - look at lower mass with ISR \(m_{Z'} < 200 \text{ GeV} \)
 - ISR allows highly efficient triggering at lower masses
 (compared to regular triggering on the resonance decay products)

- **topologies:**
 - 1 isolated \(\gamma \) + 1 large-R jet
 - 1 small-R jet + 1 large-R jet

- making use of \(\tau_{21} \) substructure variable and Designed Decorrelated Tagger (DDT; removing dependence of \(\tau_{21} \) on jet mass and \(p_T \))
 - \(\tau_N \) a measure of a jet’s compatibility with being fully aligned along N axes
 - \(\tau_{21} = \tau_2 / \tau_1 \) differentiates two-particle jets from the decay of
 a boosted resonance & a single-particle jet
 - aim to separate large-R signal jets and QCD \(\gamma \)+jet background

- background estimate using transfer factor method
Light resonances decaying to boosted quark pairs

ISR(γ/j) + boosted jj

- fit of large-R jet mass in jet & photon channels
 - background estimated separately per candidate mass
- 95% CL limits on the Z' cross section
- channels combined for limit on coupling g_q
- largest excess in the jet (γ) channel at m_{Z'} = 150 (140) GeV with local significance 2.5 (2.2)σ
Monojets and missing transverse momentum

- **motivation:** dark matter, compressed SUSY, extra dimensions, ...
 - many possible diagrams

- **requiring:** large missing transverse energy + 1 high-p_T jet + ≤3 more jets ($p_T > 30$ GeV) + no leptons

- background is constrained using a likelihood fit to the E_T^{miss} distribution in a set of control regions, taking into account systematic uncertainties

S. Alderweireldt

ATLAS results on searches for exotic new particles (28/Mar 2018)
Monojets and missing transverse energy

- setting model-independent limits using inclusive signal regions
- providing exclusion limits for a wide range of models (more in the paper)

ATLAS

F = 13 TeV, 36.1 fb⁻¹
- Axial-Vector Mediator
- Dirac Fermion DM
- \(g_q = 0.25, g_b = 1.0 \)
- 95% CL limits

ATLAS

F = 13 TeV, 36.1 fb⁻¹
- Axial-Vector Mediator
- Dirac Fermion DM
- \(g_q = 0.25, g_b = 1.0 \)
- 90% CL limits

Number of extra dimensions

- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11

Lower limit on \(M_{\text{extr}} \)

- Observed limit: \(\sigma = 2 \pm 1 \sigma_{\text{exp}} \)
- Expected limit: \(\sigma = 1 \pm 1 \sigma_{\text{exp}} \)
- Observed limit: \(\sigma = 2 \pm 1 \sigma_{\text{exp}} \)
- Expected limit: \(\sigma = 1 \pm 1 \sigma_{\text{exp}} \)

ATLAS

\(m_T = 13 TeV, 36.1 fb⁻¹ \)
- 95% CL limits, \(E_{\text{T}}^{miss} > 400 \text{ GeV} \)
- Observed limit: \(\sigma = 1 \pm 1 \sigma_{\text{exp}} \)
- Expected limit: \(\sigma = 2 \pm 1 \sigma_{\text{exp}} \)
- ATLAS **\(m_T = 13 TeV, 3.2 fb⁻¹ \)**

hadronic MONOJETS and missing transverse energy **monojet + \(E_{\text{T}}^{miss} \)**
Pair production of vector-like quarks

$T\bar{T} \rightarrow Ht + X$

- **motivation:** alternative for 4th generation quarks; hierarchy problem decays to vector bosons and 3rd generation quarks
- **approach:** 0/1-lepton + (many) jets, some b-tagged
 - 1-lepton = lepton + jets: sensitive to $T \rightarrow tH(bb)$ (12 regions)
 - 0-lepton = jets + MET: sensitive to $T \rightarrow tZ(\nu\nu)$ (22 regions)
- make use of Higgs and top tagging: categorize using $N(H)$, $N(t)$, $N(b)$, $N(j)$ multiplicities
- ML fit of effective mass
- derive 95% CL limit on production cross section

Data / Bkg

<table>
<thead>
<tr>
<th>Events</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-lepton</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1-lepton</td>
<td>3.0</td>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Top-tagged jet multiplicity

<table>
<thead>
<tr>
<th>Fraction of events</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-tagged jet multiplicity</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Effective Mass Distribution

ATLAS Simulation Preliminary

- $\sqrt{s} = 13$ TeV
- 0-lepton
- $\geq 7j$, $\geq 2b$
- Total background
- $T\bar{T}$ doublet (1 TeV)
- $T\bar{T}$ singlet (1 TeV)
- $T\bar{T}$ → ZZ (1 TeV)

ATLAS Preliminary

- $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
- Search regions
- Post-fit (Bkg-only)

Events

- 1-lepton
- 0-lepton
- $E + light$-jets
- $E + 1c$
- $E + 21b$
- $E + 1b$
- Non-E
- Total Bkg unc.

ATLAS Preliminary

- $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
- 1-lepton + 0-lepton combination
- $SU(2)$ doublet

Theoretical (NNLO prediction ±1σ) vs 95% CL observed limit vs 95% CL expected limit
Hadronic \(W' \rightarrow tb \)

- **motivation**: universal extra dimensions, little Higgs, top assisted technicolor, Kaluza-Klein gravitons, …
 - \(tb \) final state sensitive to right handed \(W' \)s
- **topology**: 1 high-\(p_T \) b-jet + 1 large-R top-jet (bqq)
- **categorize**:
 - 0 or 1 b-tag
 - 6 regions each based on b- and top tagging criteria
- making use of shower deconstruction top tagger

Hadronic $W' \rightarrow tb$

- fit reconstructed m_{tb} in signal and validation regions
- derived 95% CL limits on the cross section
- largest excess at $m = 2.25$ TeV with local significance of 2.0σ

ATLAS results on searches for exotic new particles (28/Mar 2018)
Heavy resonances decaying to taus

- **motivation**: W' preferential coupling to 3rd gen as explanation for anomalies, mass hierarchy, …
 - might not appear in e/μ final states and therefore requires targeted τ search
- selecting events with taus and large missing transverse energy
- deriving model-independent 95% CL limits
- interpretations in SSM and non-universal $G(221)$
Summary

- presented 9 recent ATLAS exotics searches using the 2015+2016 dataset (36.1 fb⁻¹)
- results covering many final states and a wide range of masses
- derivation of model-independent limits as well as interpretations testing a large number of models
- no hints of new physics yet

- for the future
 - more data to be analysed (2017+2018)
 - several more results in the pipeline
 - all public results at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
Backup
Jet substructure

- crucial tool in searches for resonances decaying to highly boosted quark pairs, SM bosons, top quarks
- τ_{21} and D_2 variables to track two-pronged signal jets \cite{2},\cite{3}
- designed decorrelated tagger (DDT) \cite{4} to remove dependence on mass & p_T
- important for
 - ISR + boosted quark pair
 - $W' \rightarrow tb$
 - $X \rightarrow WV \rightarrow l\nu qq$

\cite{1} R. Jansky

\cite{2} EXOT-2017-01
Jet substructure

jet mass: \[\sqrt{\left(\sum_{i \in J} E_i \right)^2 - \left(\sum_{i \in J} \vec{p}_i \right)^2} \]

- currently mostly using calorimeter-based jet substructure
- gain from including tracker information in substructure measurements
Jets

Resolved

Boosted/merged

Small-radius jets

Large-radius jet

Boosted jets: Increasing transverse momentum, p_T

[1] R. Jansky

S. Alderweireldt

ATLAS results on searches for exotic new particles (28/Mar 2018)