$b \rightarrow s\ell\ell$: angular analyses and studies with muons

Eluned Smith

RWTH Aachen

on behalf of the LHCb collaboration

Beauty 2018 (7-11 May 2018)
Why rare $b \rightarrow s\ell\ell$ decays?

NB: this talk covers $b \rightarrow s\mu\mu$ decays at LHCb, for $b \rightarrow see$ decays (including LFU results) see Albert Puig’s talk (up next!)

- $b \rightarrow s\ell\ell$ transitions are forbidden at tree level \rightarrow suppressed decays in the SM maybe be more sensitive to new physics (NP) effects.
- Virtual new physics particles \rightarrow high mass reach.

$b \rightarrow s\ell\ell$ in the SM

Possible contributions from NP
Use of effective theories in $b \rightarrow s\ell\ell$ SM predictions

- The heavy physics in $b \rightarrow s\ell\ell$ decays can be integrated out to give effective couplings, parameterised by the Wilson Coefficients (C_i).
- $b \rightarrow s\ell\ell$ transitions are most sensitive to the coefficients $C_{9/10}$.

As the Wilson Coefficients 'describe the loops' in the diagram, they are sensitive to NP.
Measuring $b \rightarrow sll$ transitions

- Angular analyses and branching fraction measurements
$B^0 \rightarrow K^{*0} \left[\rightarrow K^+\pi^- \right] \mu^+\mu^-$ angular analysis $[C_7, C_9, C_{10}]$

Angular decay fully described by the dilepton mass (q^2) and the angles $\cos(\theta_{1})$, $\cos(\theta_{K})$ and ϕ:

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\Omega} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell \right]$$

Fraction of longitudinal polarisation of the K^*

Forward-backward asymmetry of the dilepton system

3D fit to all three angles (in q^2 bins), exploiting the correlations between the S_i, F_L and A_{FB} terms to obtain their respective values (+ swave - see back-up).
$B^0 \rightarrow K^{*0} \rightarrow K^+ \pi^- \mu^+ \mu^-$ angular analysis: Results

Normalisation (detector acceptance/systematics partially cancel)

Signal

LHCb

Candidates / 11 MeV/c^2

Candidates / 11 MeV/c^2

Candidates / 0.1 π rad

Candidates / 0.1 π rad

$1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$
$B^0 \rightarrow K^{*0} [\rightarrow K^{+}\pi^-]\mu^+\mu^-$ angular analysis: Results

Generally very good agreement with the Standard Model

[LHCb]

F_L

$q^2 [\text{GeV}^2/c^4]$ A_{FB}

$q^2 [\text{GeV}^2/c^4]$ S_3

$q^2 [\text{GeV}^2/c^4]$ S_4

[104]

[JHEP 02 (2016) 104]
$B^0 \rightarrow K^{*0} [\rightarrow K^+\pi^-] \mu^+\mu^-$ angular analysis: Results

Reduce form factor dependence

Can construct ratios of angular observables where form-factors cancel at leading order:

$$P_5' = \frac{S_5}{\sqrt{F_L(1-F_L)}}$$

P_5' plot: Bins 4/5 = local SM tension of 2.8 and 3.0σ. Global tension = 3.4σ, assuming tension due to shift in Wilson coeff. $Re(C_9)$ (LHCb only)
\[B^0 \rightarrow K^{*0} [\rightarrow K^+\pi^-] \mu^+\mu^- \] branching fraction

The differential branching fraction also shows some tension at low \(q^2 \).
Performance comparison: $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

CMS

$N(B^0 \rightarrow K^{*0} \mu^+ \mu^-) = 346 \pm 24$

- Data
- Total fit
- Corr. tag sig.
- Mistag sig.
- Background

$\sigma^2: 1.00 - 6.00 \text{ GeV}^2$

Signal yield: 346 \pm 24

PLB 753 (2016) 453

$N(B^0 \rightarrow K^{*0} \mu^+ \mu^-) = 624 \pm 30$

LHCb

$1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$

JHEP (02) 2016 104

$N(B^0 \rightarrow K^{*0} \mu^+ \mu^-) = 275 \pm 35$

ATLAS

$\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

Preliminary

$ATLAS\text{-CONF-2017-023}$

$q^2 \in [1.1, 6.0] \text{ GeV}^2$
$B^0_s \rightarrow \phi[\rightarrow K^+K^-]\mu^+\mu^- [C_7, C_9, C_{10}]$

Equivalent process of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ for B^0_s mesons.

Angular variables consistent with the SM. P'_5 cannot be measured as $B^0_s \rightarrow \phi\mu^+\mu^-$ not self-tagging.

In bin $1 < q^2 < 6$ GeV/c^2 the data is 3.3σ from the SM prediction.
Further $b \rightarrow s \ell\ell$ branching fractions

LHCb $B^0 \rightarrow K^{*0}\mu^+\mu^-$ [JHEP 11 (2016) 047]

LHCb $B^0_s \rightarrow \phi\mu^+\mu^-$ [JHEP 09 (2015) 179]

LHCb $B^+ \rightarrow K^+\mu^+\mu^-$ [JHEP 06 (2014) 133]

$\Lambda_b^0 \rightarrow \Lambda\mu^+\mu^-$ [JHEP 06 (2015) 115]

LHCb $B^0 \rightarrow K^{0}\mu^+\mu^-$ [JHEP 06 (2014) 133]

$B^+ \rightarrow K^{*+}\mu^+\mu^-$ [JHEP 06 (2014) 133]

slide: C. Langenbruch, b2ll workshop, Munich 2018
$b \rightarrow s \ell\ell$ transitions in baryons

- Baryon sector still relatively unexplored compared to mesons
- Measurements can complement those from meson sector
The decays $\Lambda_b^0 \rightarrow \Lambda^0 \mu^+ \mu^-$ and $\Lambda_b^0 \rightarrow p K\mu^+ \mu^-$

Differential branching fraction and angular analysis

First observation and CPV measurements

![Graphs showing differential branching fractions and angular analyses with data points and fitted curves.](image-url)

![Graphs showing decay products and CPV measurements with theoretical and experimental data.](image-url)
CPV in $\Lambda^0_b \rightarrow pK\mu^+\mu^-$

Baryon production asymmetries not well known: use ΔA_{cp} and triple products

Proportional to $\sin\chi$

$$C_T \equiv \vec{p}_{\mu^+} \cdot (\vec{p}_p \times \vec{p}_{K^-})$$

$$C_T \equiv \vec{p}_{\mu^-} \cdot (\vec{p}_p \times \vec{p}_{K^+})$$

$$A_T \equiv \frac{N(C_T > 0) - N(C_T < 0)}{N(C_T > 0) + N(C_T < 0)}$$

$$\bar{A}_T \equiv \frac{N(-C_T > 0) - N(-C_T < 0)}{N(-C_T > 0) + N(-C_T < 0)}$$

$$a_{CP}^{T-odd} \equiv \frac{1}{2} (A_T - \bar{A}_T)$$

$$a_{CP}^{T-odd} \equiv \frac{1}{2} (A_T + \bar{A}_T)$$

$$a_{CP}^{T-odd} = (1.2 \pm 5.0 \text{(stat)} \pm 0.7 \text{(syst)}) \times 10^{-2} \rightarrow \text{no significant CPV}$$

- Measure $\Delta A_{CP} = A_{CP}(\Lambda^0_b \rightarrow pK^-\mu^+\mu^-) - A_{CP}(\Lambda^0_b \rightarrow J/\psi pK^-)$

$\Delta A_{CP} = (-3.5 \pm 5.0 \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-2} \rightarrow \text{no significant CPV}$
Global fits

- Global fits performed by theorists to a range of results from $b \rightarrow s\ell\ell$ measurements
- Will also discuss interpretations of global fits
Global fits

- Sub-divide between ‘clean’ observables (LFU measurements - see next talk) and ‘dirty’ observables (e.g. angular analyses)
- Just LFU $\rightarrow \sim 4\,\sigma$ deviations
- Combining all measurements \rightarrow over $5\,\sigma$ deviations

one example of a global fit, many others out there (!)

<table>
<thead>
<tr>
<th>Coeff.</th>
<th>best fit</th>
<th>1σ</th>
<th>2σ</th>
<th>pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_9^μ</td>
<td>-1.56</td>
<td>$[-2.12, -1.10]$</td>
<td>$[-2.87, -0.71]$</td>
<td>4.1σ</td>
</tr>
<tr>
<td>C_{10}^μ</td>
<td>$+1.20$</td>
<td>$[+0.88, +1.57]$</td>
<td>$[+0.58, +2.00]$</td>
<td>4.2σ</td>
</tr>
<tr>
<td>C_9^e</td>
<td>$+1.54$</td>
<td>$[+1.13, +1.98]$</td>
<td>$[+0.76, +2.48]$</td>
<td>4.3σ</td>
</tr>
<tr>
<td>C_{10}^e</td>
<td>-1.27</td>
<td>$[-1.65, -0.92]$</td>
<td>$[-2.08, -0.61]$</td>
<td>4.3σ</td>
</tr>
</tbody>
</table>

$C_9^\mu = -C_{10}^\mu$
$C_9^e = -C_{10}^e$
$C_9 = C_{10}^e$

Pull assuming 1D variation only and just LFU measurements \rightarrow increased tension when including angular analyses
What could be causing this anomaly?

pessimistic

Long distance SM effects

optimistic

Short distance NP effects
Data driven measurements of short and long distance interference

- Due to the difficulty of modelling Charmonium resonances, the J/ψ and $\psi(2S)$ are generally removed from data when looking at just the short-distance contributions.
- Vector resonances producing dimuon pairs could mimic a contribution to C_9 allowing C_9 to be expressed as

$$C_{9\text{eff}} = C_9 + Y(q^2)$$

- Possible that the deficiency in muons could be due to destructive interference from such Charmonium resonances.
Data driven approach → fit to unbinned data in q^2 for the data $B^+ \rightarrow K^+ \mu^+ \mu^-$

Express $Y(q^2)$ in terms of the sum of the magnitude and phases of the vector meson resonances ($\rho, \omega, \phi, J/\psi, \psi(2S), \psi(X)$) → model these contributions as a sum of Breit Wigners with individual width and phase.
Data driven measurements of short and long distance interference

- Four solutions fit data well reflecting the unknown sign of the J/ψ and $\psi(2S)$ phases (NB resolution dominants these resonances widths)
- The phases that are measured suggest a small contribution to the short-distance component in the dimuon mass regions far from the J/ψ and $\psi(2S)$ masses, given the assumptions made in model.
The increased data collected at the LHCb detector means that the Cabibbo-suppressed $b \rightarrow d \ell \ell$ modes are becoming more of interest.
Why $b \to d\ell\ell$ transitions?

- Combining $b \to s\ell\ell$ with their Cabibbo-suppressed partner allows a measurement of V_{td}/V_{ts} and thus a test of Minimal Flavour Violation.
- Expect branching fractions to be ~ 25 times smaller than s quark partner
Examples of $b \rightarrow d \ell \ell$ transitions

$\mathcal{B}(B^0_s \rightarrow K^{*0} \mu^+ \mu^-)$

$\rightarrow \mathcal{K}^{0} \mu^+ \mu^-$

$= (2.9 \pm 1.0 \pm 0.2 \pm 0.3) \times 10^{-8}$

$\mathcal{B}(\Lambda_b^0 \rightarrow \rho \pi^- \mu^+ \mu^-)$

$\Lambda_b^0 \rightarrow p \bar{K}^+ \mu^+ \mu^-$

$= (6.9 \pm 1.9 \pm 1.1^{+1.3}_{-1.0}) \times 10^{-8}$
Conclusions and outlook

- Number of anomalies in $b \rightarrow s\ell\ell$ transitions, consistent with a deficit in the muon channel
- Could be theoretical limitations or new physics
- More data necessary to further qualify this, as well as development in theory
- Advent of Belle 2 and further runs at the LHC will yield interesting results
Back-up slides
Data driven measurements of short and long distance interference

Following the notation of Ref. [40], the CP-averaged differential decay rate of $B^+ \to K^+ \mu^+ \mu^-$ decays as a function of the dimuon mass squared, $q^2 \equiv m_{\mu\mu}^2$, is given by

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 \alpha^2 |V_{tb}V_{ts}^*|^2}{128\pi^5} |k| |\beta| \left\{ \frac{2}{3} |k|^{2} \beta^2 |C_{10} f_+(q^2)|^2 + \frac{4m_{\mu}^2 (m_B^2 - m_K^2)^2}{q^2 m_B^2} |C_{10} f_0(q^2)|^2 \right. $$

$$ + \left. |k|^2 \left[1 - \frac{1}{3} \beta^2 \right] \left| C_9 f_+(q^2) + 2C_7 \frac{m_b + m_s}{m_B + m_K} f_T(q^2) \right|^2 \right\}, \quad (1)$$

where $|k|$ is the kaon momentum in the B^+ meson rest frame.

The parameters $f_{0,+,T}$ denote the scalar, vector and tensor $B \to K$ form factors.

Insert term into eq. above

$C_{9}^{\text{eff}} = C_9 + Y(q^2),$

where the term $Y(q^2)$ describes the sum of resonant and continuum hadronic states appearing in the dimuon mass spectrum. In this analysis $Y(q^2)$ is replaced by the sum of vector meson resonances j such that

If $n^\ast \pi^\pm /2$ term disappears in eq.1

assumes no continuum hadronic states (e.g. no DDbar)

where η_j is the magnitude of the resonance amplitude and δ_j its phase relative to C_9.

$$C_{9}^{\text{eff}} = C_9 + \sum_j \eta_j e^{i\delta_j} A_j^{\text{res}}(q^2), \quad (3)$$
Baryon production asymmetries not well known: use ΔA_{cp} and triple products
Sensitivity of methods may differ depending on strong phase interference

$\hat{T}_{\text{even}}, \hat{T}_{\text{odd}}$ amplitudes

\[a_{CP}^{\hat{T}_{-\text{odd}}} \propto \cos(\delta_{\text{even}} - \delta_{\text{odd}}) \sin(\phi_{\text{even}} - \phi_{\text{odd}}) \]

not sensitive if $\delta_{\text{even}} - \delta_{\text{odd}} = \pi/2$ or $3\pi/2$

A_1, A_2 amplitudes

\[A_{CP} \propto \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2) \]

not sensitive if $\delta_1 - \delta_2 = 0$ or π

$\delta =$ strong phase, $\phi =$ weak phase

- Measure $\Delta A_{CP} = A_{CP} (\Lambda_b^0 \rightarrow pK^- \mu^+ \mu^-) - A_{CP} (\Lambda_b^0 \rightarrow J/\psi pK^-)$
- $\Delta A_{CP} = (-3.5 \pm 5.0 \text{ (stat)} \pm 0.2 \text{ (syst)}) \times 10^{-2} \rightarrow$ no significant CPV
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: S-wave pollution

- S wave: $K^+\pi^-$ doesn’t come from K^{*0} (P-wave) but from spin 0 configuration
- Introduces additional terms in decay amplitude

$$\frac{1}{d(\Gamma + \tilde{\Gamma})/dq^2} \frac{d^3(\Gamma + \tilde{\Gamma})}{d\tilde{\Omega}} \bigg|_{S+P} = (1 - F_S) \left(\frac{1}{d(\Gamma + \tilde{\Gamma})/dq^2} \frac{d^3(\Gamma + \tilde{\Gamma})}{d\tilde{\Omega}} \bigg|_P + \frac{3}{16\pi} F_S \sin^2 \theta_\ell + \text{S-P interference} \right)$$

$$\frac{1}{d(\Gamma + \tilde{\Gamma})/dq^2} \frac{d(\Gamma + \tilde{\Gamma})}{d\cos \theta_i d\cos \theta_K d\phi} \bigg|_{S+P} = (1 - F_S) \left(\frac{1}{d(\Gamma + \tilde{\Gamma})/dq^2} \frac{d(\Gamma + \tilde{\Gamma})}{d\cos \theta_i d\cos \theta_K d\phi} \bigg|_P + \frac{3}{16\pi} \left[F_S \sin^2 \theta_\ell + S_{S1} \sin^2 \theta_\ell \cos \theta_K \right.
ight.$$

Expanding S-P interference terms:

$$+ S_{S2} \sin 2\theta_i \sin \theta_K \cos \phi$$
$$+ S_{S3} \sin \theta_i \sin \theta_K \cos \phi$$
$$+ S_{S4} \sin \theta_i \sin \theta_K \sin \phi$$
$$+ S_{S5} \sin 2\theta_i \sin \theta_K \sin \phi \bigg].$$

- To determine F_S more precisely, exploit difference in $m_{K^+\pi^-}$ mass shape between P-, S-wave and fit simultaneously to $m_{K^+\pi^-}$
- $m_{K^+\pi^-}$ line shape in S-wave: LASS model (Nucl. Phys. B296 (1988) 493), P-wave, Breit-Wigner
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: systematics

- Analysis statistically dominated (and still will be in Run 2)

<table>
<thead>
<tr>
<th>Source</th>
<th>F_L</th>
<th>S_{3-S_9}</th>
<th>A_{3-A_9}</th>
<th>P_{1-P_8}'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance stat. uncertainty</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Acceptance polynomial order</td>
<td>< 0.01</td>
<td>< 0.02</td>
<td>< 0.02</td>
<td>< 0.04</td>
</tr>
<tr>
<td>Data-simulation differences</td>
<td>0.01–0.02</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Acceptance variation with q^2</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>$m(K^+\pi^-)$ model</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.03</td>
</tr>
<tr>
<td>Background model</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Peaking backgrounds</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>$m(K^+\pi^-\mu^+\mu^-)$ model</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.02</td>
</tr>
<tr>
<td>Det. and prod. asymmetries</td>
<td>–</td>
<td>–</td>
<td>< 0.01</td>
<td>< 0.02</td>
</tr>
</tbody>
</table>
Definition of J_i terms in decay rate (the complex amplitudes are the terms which are sensitive to the Wilson coefficients):

\[
\begin{align*}
J_1^q &= \frac{\left(2 + \beta^2_\mu\right)}{4} \left[|A_{\perp 0}|^2 + |A_{\parallel 0}|^2 + (L \rightarrow R)\right] + \frac{4m^2_\mu}{q^2} \Re(A_{\perp 0}A_{\perp R} + A_{\parallel 0}A_{\parallel R}) \\
J_2^q &= |A_{\perp 0}|^2 + |A_{\parallel 0}|^2 + \frac{4m^2_\mu}{q^2} \left[|A_{\mu}|^2 + 2\Re(A_{\perp 0}A_{\perp R})\right] \\
J_3^q &= \frac{\beta^2_\mu}{4} \left[|A_{\perp 0}|^2 + |A_{\parallel 0}|^2 + (L \rightarrow R)\right] \\
J_4^q &= \beta^2_\mu \left[\Re(A_{\perp 0}A_{\perp R}) + (L \rightarrow R)\right] \\
J_5^q &= \sqrt{2}\beta_\mu \left[\Re(A_{\perp 0}A_{\perp R}) - (L \rightarrow R)\right] \\
J_6^q &= 2\beta_\mu \left[\Re(A_{\parallel 0}A_{\parallel R}) - (L \rightarrow R)\right] \\
J_7^q &= \sqrt{2}\beta_\mu \left[\Im(A_{\perp 0}A_{\perp R}) - (L \rightarrow R)\right] \\
J_8^q &= \frac{\beta^2_\mu}{\sqrt{2}} \left[\Im(A_{\perp 0}A_{\perp R}) + (L \rightarrow R)\right] \\
J_9^q &= \beta^2_\mu \left[\Im(A_{\parallel 0}A_{\parallel R}) + (L \rightarrow R)\right]
\end{align*}
\]

with $\beta^2_\mu = (1 - 4m(\mu)^2/q^2)$. The angular distribution therefore depends on 7 q^2 dependent complex amplitudes ($A_{0,R}^{L,R}$, $A_{\parallel 0,R}^{L,R}$, $A_{\perp 0,R}^{L,R}$, and A_i) corresponding to different polarisation states of the $B \rightarrow K^*V^*$ decay.

define CP-averaged observables S_i and CP-violating observables A_i according to

\[
S_i = \frac{J_i + \bar{J}_i}{(d\Gamma + d\bar{\Gamma})/dq^2}
\]

\[
A_i = \frac{J_i - \bar{J}_i}{(d\Gamma + d\bar{\Gamma})/dq^2}.
\]
The LHCb detector

The LHCb detector is a single arm spectrometer which covers the forward region at LHC.

\[\Delta p/p \sim 0.4\% \text{ at } 5 \text{ GeV}, \ \sigma_{IP} = 20 \ \mu m \text{ for high } p_T \text{ tracks.} \]

π/K separation: \(\epsilon_K \sim 90\%, \ 5\% \pi \rightarrow K \) mis-id.

π/μ separation: \(\epsilon_\mu \sim 97\%, \ 1-3\% \pi \rightarrow K \) mis-id.
The minimal flavour violation hypothesis

- The excellent agreement with theory of flavour measurements places stringent constraints on the mass scale, Λ, of new physics \rightarrow if new physics is assumed to have a generic flavour structure of $\mathcal{O}(1) \rightarrow \Lambda$ as high as 10^4 TeV (Ann.Rev.Nucl.Part.Sci.60:355, 2010)

- The MFV hypothesis offers solution to this flavour problem:
 Assume NP flavour structure = SM flavour structure

- Comparing the CKM elements obtained via loop and tree level processes tests the MFV hypothesis.