Charmless b Decays

Jeremy Dalseno

on behalf of the LHCb collaboration

J.Dalseno [at] bristol.ac.uk

28 May 2018
1. Types of CP violation
 - Direct, mixing-induced

2. 2-body
 - $B^0 \rightarrow K^+\pi^-, \pi^+\pi^-, B_s^0 \rightarrow K^+K^-$

3. 3-body
 - $B^0 \rightarrow K_S^0\pi^+\pi^-$

4. 4-body
 - $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-, \Lambda_b^0 \rightarrow pK^-h^+h^- \text{ New!}, \Xi_b^0 \rightarrow pK^-\pi^+K^- \text{ New!}$
 - $B_s^0 \rightarrow \phi\phi, K^*\bar{K}^*$
In charged B decays, presence of multiple amplitudes may lead to direct CP violation

$$A(B \rightarrow f) = \sum_i |A_i| e^{i(\delta_i + \phi_i)}$$

$$\bar{A}(\bar{B} \rightarrow \bar{f}) = \sum_i |A_i| e^{i(\delta_i - \phi_i)}$$

Strong phase (δ) invariant under CP, while weak phase (ϕ) changes sign under CP

$$A_{CP}(B \rightarrow f) \equiv \frac{|\bar{A}|^2 - |A|^2}{|\bar{A}|^2 + |A|^2} \propto \sum_{i,j} |A_i||A_j| \sin(\delta_i - \delta_j) \sin(\phi_i - \phi_j)$$

3 conditions required for direct CP violation

At least 2 amplitudes

Non-zero strong phase difference, $\delta_i - \delta_j \neq 0$

Non-zero weak phase difference, $\phi_i - \phi_j \neq 0$

Source of weak phase differences come from different CKM phases of each amplitude
Multiple sources of strong phase

1. Short-distance contributions (quark level)

 BSS mechanism, PRL 43 242 (1979)

Tree contribution (a)

Penguin diagram (b) contains 3 quark generations in loop

S-matrix unitarity, CPT require absorptive amplitude

If gluon in penguin is timelike (on-shell)

 Momentum transfer $q^2 > 4m_i^2$ where $i = u, c$

 Imaginary part depends on quark masses

 Particle rescattering (c) generates a phase difference

CP violation in 2-body processes caused by this effect

 eg. $B^0 \rightarrow K^+ \pi^-$
Long-Distance Contributions

Remaining sources endemic to multibody decays

Long-distance contributions ($q\bar{q}$ level)

2. Breit-Wigner phase

Propagator represents intermediate resonance states

$$F_R^{BW}(s) = \frac{1}{m_R^2 - s - im_R\Gamma_R(s)}$$

Phase varies across the Dalitz plot

3. Relative CP-even phase in the isobar model

$$A(B \to f) = \sum_i |A_i| e^{i(\delta_i + \phi_i)}$$

$$\bar{A}(\bar{B} \to \bar{f}) = \sum_i |\bar{A}_i| e^{i(\delta_i - \phi_i)}$$

Related to final state interactions between different resonances
Neutral Meson Mixing

Mixing arises from a difference between the mass and flavour eigenstates

$$|P_H\rangle = p|P^0\rangle + q|\bar{P}^0\rangle, \quad |P_L\rangle = p|P^0\rangle - q|\bar{P}^0\rangle$$

p, q are complex mixing parameters

Mixing can be described by the effective 2x2 Hamiltonian

$$H_{ij} = M_{ij} - i\Gamma_{ij}/2$$

M is the mass term

Γ provides the decay term due to the $-i$

Solving the Schrödinger Equation

3 mixing physical observables

$$\Delta m \equiv m_H - m_L:$$ mixing frequency in time evolution

$$\Delta \Gamma \equiv \Gamma_H - \Gamma_L:$$ lifetime difference

$$\phi_{mix} = -\arg(M_{12}/\Gamma_{12}): CP$$-violating mixing phase

Charmless b Decays
CP Violation in Neutral Mesons

CP violation in neutral meson system governed by complex parameter

\[\lambda_{CP} \equiv \frac{q \bar{A}(\bar{P}^0 \to f_{CP})}{p A(P^0 \to f_{CP})} \]

Access experimentally through time-dependent rate asymmetry in neutral mesons

\[a_{CP}(t) = \frac{\Gamma(\bar{P}^0 \to f_{CP}) - \Gamma(P^0 \to f_{CP})}{\Gamma(\bar{P}^0 \to f_{CP}) + \Gamma(P^0 \to f_{CP})} = \frac{-C_{CP} \cos(\Delta mt) + S_{CP} \sin(\Delta mt)}{\cosh(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta \Gamma t/2)} \]

Sensitive to 3 physical observables

- **C_{CP}**: *CP* violation in the decay, \(|\bar{A}| \neq |A|\)

 \[C_{CP} \equiv \frac{|\lambda_{CP}|^2 - 1}{|\lambda_{CP}|^2 + 1} \]

- **S_{CP}**: Mixing-induced *CP* violation, \(\arg(\lambda_{CP}) \neq 0\)

 \[S_{CP} \equiv -\eta_{CP} \frac{2\Im(\lambda_{CP})}{|\lambda_{CP}|^2 + 1} \]

- **A_{\Delta \Gamma}**: Admixture of \(P_H\) and \(P_L\) that decay to final state

 \[A_{\Delta \Gamma} \equiv -\frac{2\Re(\lambda_{CP})}{|\lambda_{CP}|^2 + 1} \]
1. Types of CP violation
 - Direct, mixing-induced

2. 2-body
 - $B^0 \rightarrow K^+\pi^-, \pi^+\pi^-$, $B_s^0 \rightarrow K^+K^-$

3. 3-body
 - $B^0 \rightarrow K_S^0\pi^+\pi^-$

4. 4-body
 - $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$, $\Lambda_b^0 \rightarrow pK^-h^+h^-$ \text{New!}$\,$, $\Xi_b^0 \rightarrow pK^-\pi^+K^-$ \text{New!}$
 - $B_s^0 \rightarrow \phi\phi, K^*\bar{K}^*$

Charmless b Decays
Simultaneous analysis includes $B^0 \rightarrow K^- \pi^+, \pi^+\pi^-$ and $B_s^0 \rightarrow K^+K^-$

Based on 2011+2012 data (3.0 fb^{-1})

Sensitive to direct and mixing-induced CP violation

Constrain α, γ and $-2\beta_s$

Requires time-dependent and flavour-tagged analysis
Decay times precisely measured due LHCb VELO vertex measurements

Time distribution affected by acceptance effects due to trigger and selection criteria

Shape determined from $B^0 \rightarrow K^+\pi^-$ data
Transformation to other final states from simulation
Decay Time Resolution

Event-dependent decay time resolution σ_t

Dilutes oscillation amplitudes $D = \exp \left(\frac{1}{2} \Delta m^2 \sigma_t^2 \right)$

Negligible in B^0 decays due to small Δm_d

Linearly dependent on per-event decay time error

Calibrated from time-dependent asymmetry of $B \rightarrow D\pi$ control samples

Charmless b Decays
Employs Opposite Side (OS) and Same Side (SS) taggers

Algorithm produces per-event tagging decision and associated wrong tag probability

Wrong tag probability linearly calibrated with various control samples

\(B^0\) tagging power: \((4.08 \pm 0.20)\%\), \(B_s^0\) tagging power: \((3.65 \pm 0.21)\%\)
$B \rightarrow h^+ h^-$ Results

First error statistical, second systematic

\begin{align*}
C_{\pi^+\pi^-} &= -0.34 \pm 0.06 \pm 0.01, \\
S_{\pi^+\pi^-} &= -0.63 \pm 0.05 \pm 0.01, \\
C_{K^+K^-} &= +0.20 \pm 0.06 \pm 0.02, \\
S_{K^+K^-} &= +0.18 \pm 0.06 \pm 0.02, \\
A_{K^+K^-}^{\Delta \Gamma} &= -0.79 \pm 0.07 \pm 0.10, \\
A_{CP}^{B^0 \rightarrow K^+\pi^-} &= -0.084 \pm 0.004 \pm 0.003, \\
A_{CP}^{B^0_s \rightarrow K^-\pi^+} &= +0.213 \pm 0.015 \pm 0.007
\end{align*}

Most precise single measurement

First determination of $A_{K^+K^-}^{\Delta \Gamma}$

4σ evidence for CP violation in $B^0_s \rightarrow K^+K^-$
$B \rightarrow h^+ h^- \text{ World Average}$

Contours give $-2\Delta \ln L = \Delta \chi^2 = 1$, corresponding to 39.3% CL for 2 dof.

Charmless b Decays

- **HFLAV**
- Moriond 2018
- PRELIMINARY

$\pi^+ \pi^- S_{CP}$ vs C_{CP}

- **BaBar**
 - PRD 87 (2013) 052009
 - HFLAV correlated average
 - $-0.68 \pm 0.10 \pm 0.03$

- **Belle**
 - PRD 88 (2013) 092003
 - $-0.64 \pm 0.08 \pm 0.03$

- **LHCb**
 - LHCb-PAPER-2018-006
 - $-0.63 \pm 0.05 \pm 0.01$

- **Average**
 - -0.63 ± 0.04

$\pi^+ \pi^- C_{CP}$

- **BaBar**
 - PRD 87 (2013) 052009
 - HFLAV correlated average
 - $-0.25 \pm 0.08 \pm 0.02$

- **Belle**
 - PRD 88 (2013) 092003
 - $-0.33 \pm 0.06 \pm 0.03$

- **LHCb**
 - LHCb-PAPER-2018-006
 - $-0.34 \pm 0.06 \pm 0.01$

- **Average**
 - -0.32 ± 0.04
Outline

1. Types of CP violation
 - Direct, mixing-induced

2. 2-body
 - $B^0 \rightarrow K^+\pi^-, \pi^+\pi^-, B_s^0 \rightarrow K^+K^-$

3. 3-body
 - $B^0 \rightarrow K_S^0\pi^+\pi^-$

4. 4-body
 - $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-, \Lambda_b^0 \rightarrow pK^-h^+h^-$ \text{New!}, $\Xi_b^0 \rightarrow pK^-\pi^+K^-$ \text{New!}$
 - $B_s^0 \rightarrow \phi\phi, K^*\bar{K}^*$

Charmless b Decays
$B^0 \rightarrow K^0_S \pi^+ \pi^-$

Mediated by penguin and tree processes

Time-independent amplitude analysis (today)
Sensitive to direct CP violation for intermediate states

Time-dependent amplitude analysis (long-term plan)
Direct measurement of CP violating phase β from CP eigenstate intermediates states
Flavour-specific intermediate states contribute information towards γ measurement
Analysis performed with 2011+2012 data (3.0 $f b^{-1}$)

Around 3200 signal events in signal region with $\sim 90\%$ purity

arXiv:1712.09320
\[B^0 \rightarrow K^0_S \pi^+ \pi^- \]

Isobar approach

\[A = \sum_i c_i F_i(m_{12}^2, m_{23}^2) \]

\(F_i(m_{12}^2, m_{23}^2) \): strong dynamics form factor

Contains lineshape and spin density

\(c_i \): \(CP \)-violating complex fit coefficients

\[A_{CP}^{\text{Raw}, i} = \frac{|\bar{c_i}|^2 - |c_i|^2}{|\bar{c_i}|^2 + |c_i|^2} \]

Raw \(A_{CP} \) corrections

\(B^0/\bar{B}^0 \) production asymmetry

\((-0.35 \pm 0.81)\%\)

\(\pi^+/\pi^- \) detection asymmetry

\((0.00 \pm 0.25)\%\)

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Parameters</th>
<th>Lineshape</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^*(892)^-)</td>
<td>(m_0 = 891.66 \pm 0.26) (\Gamma_0 = 50.8 \pm 0.9)</td>
<td>RBW</td>
</tr>
<tr>
<td>((K\pi)_0^-)</td>
<td>(\Re(\lambda_0) = 0.204 \pm 0.103) (\Im(\lambda_0) = 0) (\Re(\lambda_1) = 1) (\Im(\lambda_1) = 0)</td>
<td>EFKLLM</td>
</tr>
<tr>
<td>(K^*_2(1430)^-)</td>
<td>(m_0 = 1425.6 \pm 1.5) (\Gamma_0 = 98.5 \pm 2.7)</td>
<td>RBW</td>
</tr>
<tr>
<td>(K^*(1680)^-)</td>
<td>(m_0 = 1717 \pm 27) (\Gamma_0 = 332 \pm 110)</td>
<td>Flatté</td>
</tr>
<tr>
<td>(f_0(500))</td>
<td>(m_0 = 513 \pm 32) (\Gamma_0 = 335 \pm 67)</td>
<td>RBW</td>
</tr>
<tr>
<td>(\rho(770)^0)</td>
<td>(m_0 = 775.26 \pm 0.25) (\Gamma_0 = 149.8 \pm 0.8)</td>
<td>GS</td>
</tr>
<tr>
<td>(f_0(980))</td>
<td>(g_\pi = 0.165 \pm 0.025 \text{ GeV}) (g_K = 0.695 \pm 0.119 \text{ GeV})</td>
<td>Flatté</td>
</tr>
<tr>
<td>(f_0(1500))</td>
<td>(m_0 = 1505 \pm 6) (\Gamma_0 = 109 \pm 7)</td>
<td>RBW</td>
</tr>
<tr>
<td>(\chi_{c0})</td>
<td>(m_0 = 3414.75 \pm 0.31) (\Gamma_0 = 10.5 \pm 0.6)</td>
<td>RBW</td>
</tr>
</tbody>
</table>

Nonresonant (NR) \(\text{Phase space} \)

EFKLLM: \((K\pi)^0 \) form factor from QCDf

First observation of $C P$ violation in $B^0 \rightarrow K^{*+}(892)\pi^-$ (6\sigma significance)
1. Types of CP violation
 - Direct, mixing-induced

2. 2-body
 - $B^0 \rightarrow K^+\pi^-, \pi^+\pi^-, B^0_s \rightarrow K^+K^-$

3. 3-body
 - $B^0 \rightarrow K^0_S\pi^+\pi^-$

4. 4-body
 - $\Lambda^0_b \rightarrow p\pi^-\pi^+\pi^-, \Lambda^0_b \rightarrow pK^-h^+h^-$, $\Xi^0_b \rightarrow pK^-\pi^+K^-$
 - $B^0_s \rightarrow \phi\phi$, $K^*\bar{K}^*$
4-body Baryonic Decays

Rich underlying resonant structure

Probe CP violation with integrated and scalar triple-product asymmetry measurements

P-odd triple products

Λ_b^0: $C_{\hat{T}} = \vec{p}_p \cdot (\vec{p}_{h_1^-} \times \vec{p}_{h_2^+}) \propto \sin \Phi$

$\bar{\Lambda}_b^0$: $\bar{C}_{\hat{T}} = \vec{p}_{\bar{p}} \cdot (\vec{p}_{h_1^+} \times \vec{p}_{h_2^-}) \propto \sin \bar{\Phi}$

P-odd asymmetries of \hat{T} operator

$A_{\hat{T}} = \frac{N(C_{\hat{T}} > 0) - N(C_{\hat{T}} < 0)}{N(C_{\hat{T}} > 0) + N(C_{\hat{T}} < 0)}$

$\bar{A}_{\hat{T}} = \frac{\bar{N}(-\bar{C}_{\hat{T}} > 0) - \bar{N}(-\bar{C}_{\hat{T}} < 0)}{\bar{N}(-\bar{C}_{\hat{T}} > 0) + \bar{N}(-\bar{C}_{\hat{T}} < 0)}$

Sensitive to interference between P-even and P-odd amplitudes
Λ^0_0 → pπ^−h^+h^− Results

Based on 2011-12 data (3.0 fb\(^{-1}\))

Nature Physics 13 (2017) 391

No CP violation in integrated phase space

Divide into bins

Scheme A:

Based on dominant resonant structure

eg. Δ^{++}, N^*, \rho(770)

Scheme B:

Function of angle between decay planes

First evidence for CP violation (3.3σ)
\[\Lambda^0_b \to pK^− \pi^+ \pi^− \]

New preliminary result based on 3.0 \(fb^{-1}\) \((p\pi^- h^+ h^-' \to pK^- h^+ h^-')\)

\[\Lambda^0_b \to pK^− \pi^+ \pi^- \quad \text{Yield: } 19877 \pm 195 \]

\[\Lambda^0_b \to pK^- K^+ K^- \quad \text{Yield: } 5297 \pm 83 \]

\[\Xi^0_b \to pK^- \pi^+ K^- \quad \text{Yield: } 709 \pm 45 \]

Left: Scheme A, Right: Scheme B

Scheme A: Binned in dominant resonances

Scheme B: Binned in \(\Phi\)

Additional binned search in mass combinations

No significant asymmetries found

arXiv:1805.03941
$B_s^0 \rightarrow \phi\phi \,(b \rightarrow s\bar{s}s), \, K^*\bar{K}^* \,(b \rightarrow s\bar{d}d)$ penguin dominated final states

Highly sensitive to New Physics amplitudes in the mixing and decay processes

Final state is CP admixture, time-dependent angular analysis to disentangle

Measure CP-violating mixing phase $\phi_{s\bar{s}s}^s, \phi_{s\bar{d}d}^s$

Theory: $|\phi_{s\bar{s}s}^s| < 0.02 \ \text{rad}$

Analysis based on Run 1 and 2015+16 data \((5 \text{ fb}^{-1})\), LHCb-CONF-2018-001

Effective tagging efficiency

\((5.74 \pm 0.43)\%\)

Red: \(CP\)-even \(VV\)

Green: \(CP\)-odd \(VV\)

Purple: \(SV + SS\)

\[
\phi_s^{\bar{s}s} = -0.07 \pm 0.13 \text{ (stat)} \pm 0.03 \text{ (syst)} \text{ rad}
\]

\[
|\lambda_{CP}| = 1.02 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)}
\]

Additional search with triple product asymmetries shows no \(CP\) violation
Analysis based on 2011+12 data ($3 \, fb^{-1}$)

World’s first measurement

JHEP 03 (2018) 140

$K\pi$ mass distribution modelled

Effective tagging efficiency: $(5.17 \pm 0.17)\%$

Systematics dominated by multi-dimensional acceptance

No evidence for CP violation

Results consistent with $B^0_s \rightarrow \phi\phi$

$$\phi^{sdd}_s = -0.10 \pm 0.13 \text{ (stat)} \pm 0.14 \text{ (syst)} \text{ rad}$$

$$|\lambda_{CP}| = 1.035 \pm 0.034 \text{ (stat)} \pm 0.089 \text{ (syst)}$$
LHCb provides a rich environment to search for various manifestations of CP violation

Time-dependent measurement of CP violation in $B \rightarrow h^+ h^-$
 Most precise single measurement

Amplitude analysis of $B^0 \rightarrow K_S^0 \pi^+ \pi^-$
 First observation of CP violation in $B^0 \rightarrow K^*+ \pi^-$

Search for CP violation in 4-body baryonic b decays
 First evidence of CP violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ with triple product constructs

Time-dependent measurements of ϕ_s with $B^0 \rightarrow VV$ channels
 $B_s^0 \rightarrow \phi\phi$ consistent with SM predictions
 First measurement with $B_s^0 \rightarrow K^* \bar{K}^*$