LEP and Radiative Electroweak Breaking
Close the Light Gluino Window

JORGE L. LOPEZ(a)(b), D. V. NANOPOULOS(a)(b)(c), and XU WANG(a)(b),
(a)Center for Theoretical Physics, Department of Physics, Texas A\&M University
College Station, TX 77843-4242, USA
(b)Astroparticle Physics Group, Houston Advanced Research Center (HARC)
The Woodlands, TX 77381, USA
(c)CERN Theory Division, 1211 Geneva 23, Switzerland

ABSTRACT

We show that the LEP lower bound on the chargino mass, in conjunction with the well
motivated theoretical requirement of radiative electroweak symmetry breaking, imply an
upper bound on the lightest Higgs boson mass ($m_h \lesssim 62$ GeV) in a supersymmetry breaking
scenario where the gluino mass is a few GeV. Moreover, Higgs searches at LEP in the
context of this model require $m_h \gtrsim 61$ GeV. The remaining experimentally allowed region
in the five-dimensional parameter space of this light gluino model is severely fine-tuned
(with $\tan\beta = 1.88 - 1.89$ and $m_t = 114.0 - 114.3$ GeV) and cosmologically troublesome
(with a neutralino relic abundance over five-hundred times larger than allowed). Modest
improvements in sensitivity in LEP Higgs searches and Tevatron top-quark searches should
soon exclude this theoretically disfavored model completely.
There has been recent renewed interest on the viability of a narrow range of presumably as yet experimentally unexplored light gluino masses \((m_{\tilde{g}} \approx 3 - 5 \text{ GeV})\) \([1,2,3,4,5,6]\). This possibility is motivated by the observation that such light colored particle affects the running of the strong coupling and may make experimental determinations of \(\alpha_s\) at various low- and high-energy scales to be in better or worse agreement with each other \([1,2,5]\). Recently, \([6]\) a thorough re-examination of the compatibility of this scenario with perturbative QCD data has yielded proposed experimental searches at LEP and HERA which could let this matter to rest. In this paper we show that well motivated theoretical assumptions in the context of unified supersymmetric models, combined with current LEP data on chargino and Higgs searches, strongly disfavor the light gluino scenario. In fact, the actual five-dimensional window of parameter space in this class of light gluino models is almost completely closed, except for some highly fine-tuned values of the parameters which are unlikely to survive mild improvements in sensitivity in Higgs and top-quark searches. Moreover, such values of the parameters imply a neutralino cosmological relic density over five-hundred times larger than observationally allowed.

We work in the context of unified supersymmetric models, where consistency requires the introduction of supergravity to induce the low-energy splittings between particle and sparticle masses \([4]\). This procedure takes the form of universal soft-supersymmetry breaking at the unification scale \((M_U = O(10^{16} \text{ GeV}))\) and subsequent renormalization group scaling of scalar and gaugino masses down to low energies. We also demand radiative electroweak breaking of the electroweak symmetry \([8]\), which relates the soft-supersymmetry breaking parameters to the Higgs mixing parameter \(\mu\). This class of unified supersymmetric models has been studied for over a decade (for a recent reappraisal see e.g., Ref. \([9]\)). In this context all gaugino masses, \(m_{\tilde{g}} (SU(3)_C), M_2 (SU(2)_L),\) and \(M_1 (U(1)_Y)\), are equal to \(m_{1/2}\) at \(M_U\) and then scale at low energies as

\[
m_{\tilde{g}} = m_{1/2} \frac{\alpha_s(M_Z)}{\alpha_s(M_U)} \approx 2.9 m_{1/2},
\]

for \(\alpha_s(M_Z) = 0.120\), and

\[
M_1 = \frac{5}{3} \tan^2 \theta_w M_2, \quad M_2 \approx 0.8 m_{1/2} \approx 0.3 m_{\tilde{g}}.
\]

Thus, \(m_{\tilde{g}} \sim 3 - 5 \text{ GeV}\) implies \(m_{1/2} \sim 1 - 1.7 \text{ GeV}\) and \(2M_1 \approx M_2 \sim 0.8 - 1.4 \text{ GeV}\). These mass relations imply that the lightest eigenstate of the \(4 \times 4\) neutralino mass matrix is very
nearly a pure photino with mass $m_{\chi_1^0} \approx \frac{8}{3} \sin^2 \theta_w M_2 \approx \frac{1}{6} m_{\tilde{g}}$. Furthermore, the lightest chargino mass is given by

$$m_{\chi_1^\pm}^2 = M_W^2 + \frac{1}{2} \mu^2 - \frac{1}{2} \sqrt{\mu^4 + 4 M_W^2 \mu^2 + 4 M_Z^4 \cos^2 2\beta},$$

(3)

where $M_2/M_W \ll 1$ has been used. It is not hard to see \[3\] that the LEP lower bound $m_{\chi_1^\pm} > \frac{1}{2} M_Z$ implies an absolute upper bound on $\tan \beta$,

$$| \cos 2\beta | < | \cos 2\beta |_{\text{max}} = 1 - \frac{1}{4 \cos^2 \theta_w} = 0.674 \quad \Rightarrow \quad \tan \beta \lesssim 2.27,$$

(4)

and a $\tan \beta$-dependent upper bound on $| \mu |$,

$$\mu^2 < \mu_{\text{max}}^2 = 4 M_W^2 \cos^2 \theta_w (\cos^2 2\beta_{\text{max}} - \cos^2 2\beta) < (96 \text{ GeV})^2.$$

(5)

Since radiative electroweak breaking requires $\tan \beta > 1$ \[8\], we obtain a definite allowed interval in $\tan \beta$ to be explored. Note that for $\tan \beta = 1$, $| \mu_{\text{max}} | = 96 \text{ GeV}$ whereas for $\tan \beta = 2.27$, $| \mu_{\text{max}} | = 0$.

The relatively low allowed values for $\tan \beta$ hint to the possibility of a light Higgs boson in this scenario. In fact, for $\tan \beta = 2.27$, $m_h^{\text{tree}} < | \cos 2\beta | M_Z \approx 61.5 \text{ GeV}$. Since it is known that an improved experimental lower bound on m_h ($m_h > 60 \text{ GeV}$) applies to this class of models \[10\], it is important to determine the largest allowed values of m_h in the light gluino scenario. To this end we need to investigate: (i) whether $\tan \beta = \tan \beta_{\text{max}}$ is actually allowed by any other constraints on the model, and (ii) what is the magnitude of the one-loop corrections to m_h^{tree}.

The radiative electroweak symmetry breaking constraint is enforced by requiring the scalar potential to have a proper minimum at the electroweak scale. This entails two constraint equations which one uses to determine the values of $| \mu |$ and the universal bilinear soft-supersymmetry breaking mass B. Using the tree-level Higgs potential, the $| \mu |$ equation is \[8\]

$$\mu^2 = X_0 m_0^2 + X_{1/2} m_{1/2}^2 - \frac{1}{2} M_Z^2,$$

(6)

where m_0 is the universal soft-supersymmetry breaking scalar mass, and $X_0, X_{1/2}$ are functions of m_t and $\tan \beta$. In particular,

$$X_0 = -1 + \frac{3}{2} \tan^2 \beta - \frac{1}{2 \tan^2 \beta + 1} (m_t/192 \text{ GeV})^2.$$

(7)
Since $m_{1/2} \sim 1$ GeV, and $|\mu| < |\mu_{\text{max}}| < 96$ GeV, Eq. (3) shows that m_0 must be bounded above by $m_0 \lesssim \sqrt{3/2X_0}M_Z$. This upper bound can be very weak if $\tan \beta$ and m_t are chosen such that X_0 nearly vanishes. This leads to a fine-tuning situation discussed below. Otherwise, an upper bound on m_0 and thus on the squark masses results, which restricts the magnitude of the one-loop corrections to m_{h}^{tree} since these are proportional to $\ln(m_{\tilde{q}}^2/m_t^2)$. We note that our calculations below use the one-loop effective scalar potential, where simple relations as in Eqs. (6) and (7) are not obtainable. Nonetheless, the argument still holds but with somewhat shifted values of the parameters.

A more “efficient” way to maximize the value of m_h is by considering the largest possible $\tan \beta$ values. However, as shown in Eq. (3), these imply very low values of $|\mu|$. In turn, the second-to-lightest neutralino will have a significant higgsino component and will contribute to $\Gamma(Z \rightarrow \chi_2^0\chi_2^0)$ more than the LEP data allow. (The lightest neutralino has a very suppressed coupling to the Z since it is nearly a pure photino eigenstate.) Thus, $\tan \beta$ is not allowed to reach its otherwise maximum possible values.

All the above remarks have been verified explicitly by a direct search of the parameter space with $m_{1/2} = 1$ GeV; $\tan \beta = 1.25, 1.50, 1.75, 2.00, 2.25$; $m_t = 130, 160$ GeV; $m_0 = 40 \rightarrow 200$ GeV; $A = 0, \pm m_0$. Lower values of m_0 would cause the sneutrino mass to fall below the LEP lower bound ($m_{\tilde{\nu}} \gtrsim 42$ GeV) and higher values push $|\mu|$ above $|\mu_{\text{max}}|$. This explicit search yielded a set of allowed points in parameter space with $m_h = 16\rightarrow 46$ GeV and $\tan \beta \leq 1.75$. Shortly we will show that all these Higgs masses are already experimentally excluded.

As mentioned above, if in Eq. (3), $X_0 \approx 0$, the upper bound on m_0 can be relaxed. As well, potentially allowed values of $\tan \beta$ between 1.75 and 2.00 would have been missed by our explicit search above. A more detailed search of the parameter space geared at exploring the small-X_0 region and the highest values of $\tan \beta$, shows that $\tan \beta$ values as high as 1.89 are actually allowed. However, only if $X_0 \approx 0$ can one obtain Higgs masses which are substantially higher than the corresponding tree-level maximum (≈ 51 GeV for $\tan \beta = 1.89$). Using the tree-level expression in Eq. (7) for $\tan \beta = 1.88 (1.89)$ one obtains $X_0 = 0$ for $m_t = 117.2 (117.6)$ GeV. In actuality, using the one-loop effective potential, the critical value of m_t is $m_t = 114.0 (114.3)$ GeV. In this case we obtain $m_{h}^{\text{max}} \approx 62$ GeV, with $m_{\chi_1^\pm} \approx 45 \rightarrow 46$ GeV and $m_0 \approx 500$ GeV also required. Values of $m_h > 58 (60)$ GeV are obtained for $\tan \beta > 1.80 (1.87)$ with the appropriately fine-tuned value of $m_t = 111 (114)$ GeV. It is then crucial to determine whether these points in parameter space are excluded by the LEP Higgs searches or not.
In Ref. [10] we described a procedure to obtain the appropriate experimental lower bound on m_h for a given point in parameter space in this class of models, given the fact that the current standard model Higgs mass bound is $m_H > 61.6 \text{GeV}$. The condition to be satisfied by allowed points in parameter space is

\[f \cdot \sigma(m_h)_{\text{susy}} < \sigma(61.6)_{\text{SM}}, \]

(8)

where $f = \text{BR}(h \rightarrow 2\text{jets})_{\text{susy}}/\text{BR}(H \rightarrow 2\text{jets})_{\text{SM}}$, $\sigma_{\text{susy}} = \sigma(e^+e^- \rightarrow Z^*h)$, and $\sigma_{\text{SM}} = \sigma(e^+e^- \rightarrow Z^*H)$. The computation of the f-factor includes all possible kinematically allowed h decay modes. Of particular concern are the following ones: $h \rightarrow \chi^0_1\chi^0_1$, $\chi^0_1\chi^0_2$, $\chi^0_2\chi^0_2$. However, since $\chi^0_1 \approx \tilde{\gamma}$, the $h-\tilde{\gamma}-\tilde{\gamma}$ and $h-\tilde{\gamma}-\chi^0_i$ couplings nearly vanish [11]. Moreover, we find $m_{\chi^0_2} > 36 \text{GeV}$ making these decay channels inconsequential for $m_h \approx 62 \text{GeV}$, and therefore $f \approx 1$ [10]. The cross sections in Eq. (8) differ simply by a coupling factor $\sin^2(\alpha - \beta)$ and the Higgs mass used which enters through a function P. With these substitutions we get $f \cdot \sin^2(\alpha - \beta) < P(61.6/M_Z)/P(m_h/M_Z)$ with [12]

\[P(y) = \frac{3y(y^4 - 8y + 20)}{\sqrt{4 - y^2}} \cos^{-1} \left(\frac{y(3 - y^2)}{2} \right) -3(y^4 - 6y^2 + 4) \ln y - \frac{1}{2}(1-y^2)(2y^4 - 13y + 47). \]

(9)

This analysis shows that only those points above with $m_h \gtrsim 61 \text{GeV}$ would still be experimentally allowed, i.e., with the fine-tuned values $\tan \beta = 1.88 - 1.89$, $m_t = 114.0 - 114.3 \text{GeV}$, $m_{\chi^\pm_1} \approx 45 - 46 \text{GeV}$, and $m_0 = 480 - 540 \text{GeV}$. We note that a mild improvement in sensitivity in LEP Higgs searches and Tevatron top-quark searches are likely to exclude this remaining region of parameter space. One should bear in mind that the fine-tuning required to get these allowed points would need to be performed at each order in perturbation theory.

We expect the above situation to persist for a range of light gluino masses ($m_{\tilde{g}} \sim m_{\tilde{\gamma}} \ll M_W$), as long as the gaugino masses are related to each other by $\mathcal{O}(1)$ coefficients as assumed here. We also note that the class of supersymmetry breaking scenarios that is actually being studied here ($m_{1/2}/m_0 \sim 1/100$) is also obtained in recent string-inspired model calculations [13], except that such low values of $m_{1/2}$ have not been considered so far.

It is interesting to note that other phenomenological constraints may also lead to stringent constraints on this scenario. In fact, if the lightest neutralino (the photino) is stable, as it would be in the usual R-parity conserving models, then its cosmological
relic abundance would be quite large due to the inefficiency of the possible annihilation channels. Following the methods of Ref. [14], we obtain $\Omega \chi h_0^2 \gtrsim 33$ in general, and $\Omega \chi h_0^2 \gtrsim 500$ for $m_h \gtrsim 61\text{ GeV}$. Therefore, the remaining fine-tuned region of parameter space is in gross conflict with cosmological observations (which require $\Omega \chi h_0^2 < 1$) and could only be made cosmologically acceptable in a model with suitable R-parity breaking (see e.g., Ref. [15]). We also note that future improvements in the determination of the W-width at the Tevatron may be sensitive enough to the $W^\pm \rightarrow \chi^\pm \gamma$ contribution, further constraining this scenario.

We conclude that the theoretical requirement of radiative electroweak symmetry breaking in the light gluino scenario entails a rather light Higgs boson mass range ($m_h \lesssim 62\text{ GeV}$) which is almost completely in conflict with LEP search limits, \footnote{c.f. Ref. [15] where this constraint was not applied and the light gluino scenario in supergravity models was deemed viable.} which in this model imply $m_h \gtrsim 61\text{ GeV}$. Moreover, the very small experimentally allowed region in parameter space is cosmologically troublesome and severely fine-tuned with $\tan \beta = 1.88 - 1.89$ and $m_t = 114.0 - 114.3\text{ GeV}$. It should not be long before further searches at LEP (m_h) and the Tevatron (m_t) close the light gluino window completely in the well motivated class of supergravity models we consider.

Acknowledgments: This work has been supported in part by DOE grant DE-FG05-91-ER-40633. The work of J.L. has been supported by an SSC Fellowship. The work of D.V.N. has been supported in part by a grant from Conoco Inc. The work of X.W. has been supported by a World-Laboratory Fellowship. J.L. would like to thank Kajia Yuan, Gye Park, and Heath Pois for useful discussions.
References