Physics motivation

- A rich set of physics processes contribute to the $B^0 \rightarrow h^+h^-$ decays ($h = \pi, K$)
- Tree and penguin decay topologies
- Neutral B-mixing
- Time-dependent (TD) CPV observables are sensitive to the CKM angle γ and the mixing phases ϕ_d and ϕ_ℓ
- Direct CP asymmetries of $B^0 \rightarrow K\ell\nu$ provide a test of the SM given validity of U-spin symmetry [1,2]
- Presence of loop diagrams makes the CPV observables sensitive to New Physics [3,4]

Experimental Strategy

- Event selection
 - Particle identification (PID) requirements:
 - $\pi^+\pi^- K^+K^-$: reduce $B^0 \rightarrow K\pi\pi$ to ~10% of the signal
 - $K^*\pi$: reduce $B^0 \rightarrow \pi\pi$ and $B^0 \rightarrow K^*\pi$ to ~10% of $B^+ \rightarrow \pi\pi$ and $B^0 \rightarrow K^*\pi$ respectively
 - BDT optimisation: $R_{M} = S_1 / S_2 / B_1$ (signal from MC samples)
 - Background from upper mass sideband

CPV observables and previous measurements

- Asymmetry of $B^0 \rightarrow K\pi\pi$ and $B^0 \rightarrow \pi\pi$
 - TD CPV asymmetries of $B^0 \rightarrow h^+h^-$ decays
 - $A_{CP} (B^0 \rightarrow K^+K^-) = A_{CP} (B^0 \rightarrow \pi^+\pi^-) = -0.084 \pm 0.004 \pm 0.003$
 - $A_{CP} (B^0 \rightarrow \pi^+K^-) = 0.213 \pm 0.015 \pm 0.007$

Analysis strategy

- Favour Tagging plays a crucial role
 - C_{T}^{s} and S_{T}^{s} are diluted by the mistag fraction ω
 - Sensitivity on C_{T}^{s} and S_{T}^{s} is proportional to the tagging power $\varepsilon (1 - 2\omega)^2$
 - ε is the tagging efficiency

Conclusions

- Measurements are very well in agreement with previous results
- Strong evidence of TD CPV in B_1 decays: significance $> 4\sigma$
- Most precise measurement of A_{CP} and C_{T}^{s} from single experiment

State of the art

| Observable | Bar$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{T}^{s}</td>
<td>-0.25 ± 0.08</td>
<td>-0.31 ± 0.07</td>
<td>-0.38 ± 0.15</td>
<td>-0.31 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>S_{T}^{s}</td>
<td>-0.68 ± 0.10</td>
<td>-0.64 ± 0.09</td>
<td>-0.71 ± 0.13</td>
<td>-0.66 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>A_{CP}^{s}</td>
<td>0.14 ± 0.11</td>
<td>-</td>
<td>0.30 ± 0.12</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>A_{CP}^{d}</td>
<td>-0.107 ± 0.017</td>
<td>-0.069 ± 0.016</td>
<td>-0.831 ± 0.014</td>
<td>-0.803 ± 0.008</td>
<td>-0.802 ± 0.006</td>
</tr>
<tr>
<td>A_{CP}^{u}</td>
<td>-</td>
<td>-</td>
<td>0.22 ± 0.07</td>
<td>0.27 ± 0.04</td>
<td>0.26 ± 0.04</td>
</tr>
</tbody>
</table>

- $1 \, \text{fb}^{-1}$ LHCb measurements done with $1 \, \text{fb}^{-1}$