The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package 14: Infrastructure for advanced calorimeters.

Copyright © CERN for the benefit of the AIDA-2020 Consortium
Pyrame 3

an online framework for Calice SiW-Ecal
Frédéric Magniette on behalf of the Calice collaboration
CHEF Oct. 2017, Lyon

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654168

AIDA 2020

CNRS

Calorimeter for ILC

École Polytechnique Université Paris-Saclay
Pyrame in a nutshell

- Online framework
- Collection of command modules
- Peer to peer asynchronous tcp/ip comm.
- One task per module
- Functional code in Python, C/C++/Root, R, Lua, Shell
- Open-source
- Used on different HEP experiments:
 - T2K wagasci
 - Calice SiW-Ecal
 - Harpo (TPC)
Dozens of hardware modules (drivers)

- Buses: RS232, GPIB, Ethernet, TCP, UDP, USB
- Power Supplies (Agilent, CAEN, Hameg…)
- Pattern Generators (Agilent)
- Motion controllers and probe station (Newport, Thorlabs, Signatone)
- Digital storage oscilloscopes (Lecroy)
- Particle detector chip (Omega)
- GaussMeter (LakeShore)
- Multimeter (Keithley)

It is very easy to write (adapt) a new module for your hardware
Acquisition Chain

- Multi-media
- Multi-format
- Fast: 4Gb/s
- Collect all data from all sources
- Aggregate by stream
- Extract command packets
What's new in Pyrame 3

- New online data handling mechanism
- Online decoders
- Online reconstruction
- Online Monitoring
- Unified configuration system
- Advanced scripting facilities
Dispatcher and Event Loop

- Break real-time constraint
- Fair subsampling
- Data structure publication
- Serve data to any client (multiple access)
- New run reinit mechanism
- Central index of data sources

- Ease online analysis development
- Allow chaining
- Possibility to use multiple event-loops at the same time
- Field value extraction by name function
- Only for C/C++ (ok for root)
Data format

- Basic data bricks are "events" which contains fields splitted in 3 domains
 - Space coordinates
 - Time coordinates
 - Any other data: hit, energy, quality tag…
- Events are grouped in "blocks"
 - A block can have some global properties including a unique id for the run
- Event grouping is up to the online developper
 - Beware: subsampling quality relies heavily on statistical representativity. There should be no bias in event representativity in blocks
- Pyrame can be easily adapted to any format that can embed such a structure (for example LCIO)
- SAF: a simple ascii format
 prop1,prop2!time1,time2...|space1,space2,...|data1,data2...!time1,time2...
Performance

- Event-loop decoding is better if packets are big: network overhead
- Encoding and decoding are linear in data size
- Can be improved by a binary format

On HP Zbook with I5 8 threads processor
Online converters

- A data converter can be launched by data source
- Decode data in real time + do some very basic reconstruction
- Group data by blocks corresponding to time slots
- Feed a dispatcher
Applications for SiW-Ecal: Calicoes

Real time domain

ECAL → Acquisition server → Multiple ECAL converters → Event builder → Track reconstruction

Hit camera

DP: Energy histogram

Event display

DP: Angle histogram
Online Monitoring

- Instanciate event loops connected to all decoders
- make plots from data
- Simple version just make some beam spotting
- Expert version make plots of all errors and malfunction
- Monitor beam in real time

Beam monitoring during beam-test @ DESY
New scripting facilities

- Allow any complex behavior (calibration, data driven reconfiguration...)
- All hardware accessible from script
- Central configuration file (all HW)
- All electronics from detector is reconfigurable on the fly
- Integrate offline analysis, inducing reconfiguration
- Export variables from online treatments, usable in script
- Scripts are written in

```python
Move table to position 32
Set high-voltage to 100v
Wait 120s
Do
    Acquire data for 300s
    Analyse data
    Output noisy channels
    Mask noisy channels
Until #noisy-channels=0
Start event builder
Acquire data
Do
    Eb export variable #full-events
    Wait 60s
Until #full-events>=1000
Stop acquisition
```
Eudaq integration

- Eudaq and Calicoes now have the same state machine
- Easy command integration for "normal run"
- Calicoes includes already a Eudaq1 producer (migration planned to Eudaq2)
- Data feeding for Eudaq will be done through a multiple event-loops client (not implemented yet)
- Question: how to format data to avoid second specific decoding inside Eudaq?
- What about some "standard format" with a generic decoder provided natively in Eudaq? extended LCIO? compressed JSON? Podio? Specific new binary format?
Summary and perspectives

- Pyrame 3 is an online framework, flexible, stable and performant
- Provides new functionalities in online monitoring and advanced scripting
- Provides advanced support to SiW-Ecal testbeams for years: see A. Irles talk Tuesday

- Foreseen developments
 - High level data analysis
 - Optimize data transfert by adopting adapted new format