Charm mixing and CPV

Giulia Tuci,
on behalf of the LHCb collaboration

giulia.tuci@cern.ch

Peniche, 19/06/2018
Outline

❖ CPV in charm @ LHCb

❖ Direct CPV:
 ➢ \(\Delta A_{CP}^{\Lambda_c \rightarrow p h^+ h^-} \) \[\text{JHEP 03(2018)182}\]
 ➢ \(A_{CP}^{D_0 \rightarrow K_S^0 K_S^0} \) \[\text{arXiv:1806.01642} \text{ submitted to JHEP NEW}\]
 ➢ \(A_{CP}^{D_0 \rightarrow h^+ h^- \mu^+ \mu^-} \) \[\text{LHCb-PAPER-2018-020} \text{ in preparation NEW}\]

❖ Charm mixing and indirect CPV:
 ➢ \(D_0^0 - \overline{D_0}^0 \) mixing and CPV with \(D^0 \rightarrow K^+ \pi^- \) \[\text{PRD 97(2018) 031101}\]

Giulia Tuci, 19/06/2018
CPV in charm

- Charm transitions are a unique portal for obtaining a novel access to flavor dynamics
 - complementarity wrt B and K mesons
 - CPV in charm predicted $\sim O(10^{-3})$:
 low SM background \rightarrow sensitivity to “New Physics”

- CPV in charm decays has not yet been observed!

- Large samples of charm mesons decays needed \rightarrow LHCb
 - $\sim 10^6 c\bar{c}$ pairs per second produced in LHCb acceptance ($2<\eta<4.5$, $0<p_T<8$ GeV/c) at LHC
 - Good momentum resolution (0.5% - 1%)
 - Excellent vertex resolution (IP resolution $(15+29/p_T)\mu$m)

\[
\begin{align*}
\sigma(pp \rightarrow D^0 X) &= 2072 \pm 2 \pm 124 \mu b \\
\sigma(pp \rightarrow D^+ X) &= 834 \pm 2 \pm 78 \mu b \\
\sigma(pp \rightarrow D_s^+ X) &= 353 \pm 9 \pm 76 \mu b \\
\sigma(pp \rightarrow D_s^{**+} X) &= 784 \pm 4 \pm 87 \mu b
\end{align*}
\]

JHEP 05 (2017) 074
Direct CPV

- Difference of decay rate between two CP conjugate states

\[A^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} \]

- Quantity measured in LHCb

\[A^{raw} \equiv \frac{N_D - N_{\bar{D}}}{N_D + N_{\bar{D}}} \]

\[A^{raw} \approx A^{CP} + A^{prod} + A^{det} \]
Direct CPV

- Difference of decay rate between two CP conjugate states

\[A^{CP}(f) = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to f)}{\Gamma(D \to f) + \Gamma(\bar{D} \to f)} \]

- Quantity measured in LHCb

\[A^{raw} \equiv \frac{N_D - N_{\bar{D}}}{N_D + N_{\bar{D}}} \]

Production asymmetry: initial state pp is not CP symmetric

\[A^{raw} \approx A^{CP} + A^{prod} + A^{det} \]
Direct CPV

- Difference of decay rate between two CP conjugate states

\[A^{CP}(f) = \frac{\Gamma(D \rightarrow f) - \Gamma(\bar{D} \rightarrow f)}{\Gamma(D \rightarrow f) + \Gamma(\bar{D} \rightarrow f)} \]

- Quantity measured in LHCb

\[A_{raw} \equiv \frac{N_D - N_{\bar{D}}}{N_D + N_{\bar{D}}} \]

Production asymmetry: initial state pp is not CP symmetric

Asymmetric detector acceptance + material interaction different for particles/antiparticles
ΔA^CP in $\Lambda_c \rightarrow p h^+ h^-$

- CPV in charm baryons almost unexplored

$A_{\text{CP}}(\Lambda_c^+ \rightarrow \Lambda^0 \pi^+) = (-7 \pm 31\%)$
FOCUS, PLB 634 (2006) 165

$A_{\text{CP}}(\Lambda_c^+ \rightarrow \Lambda^0 e^+\nu_e) = (0 \pm 4\%)$
CLEO, PRL 94 (2005) 191801

- Dataset: full Run1 sample (3 fb$^{-1}$)

- Production mode: $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- X$
 - requirements on $\Lambda_c^+ \mu^-$ vertex displacement suppress background

- Measured quantity: $\Delta A^\text{CP} = A_{\text{CP}}(\Lambda_c^+ \rightarrow p K^+ K^-) - A_{\text{CP}}(\Lambda_c^+ \rightarrow p \pi^+\pi^-)$
 - Detector and production asymmetries cancel if kinematics are identical
 - $p\pi^+\pi^-$ kinematics equalized to pK^+K^- kinematics before extracting raw asymmetry, weights computed using GBDT
 - Per candidate weights provided for theoretical interpretation
ΔA^{CP} \text{ in } \Lambda_c \rightarrow ph^+h^-$

- Measured phase-space integrated CPV
- Cut-based selection to avoid creating kinematic differences between decay modes
- A^{raw} extracted fitting ph^+h^- mass distribution and corrected for efficiency variation across 5D phase-space → from simulated events

[1HEP 03(2018)182]
\[\Delta A_{\text{CP}} \text{ in } \Lambda_c \rightarrow \phi^+ \phi^- \]

Results

\[\Delta A_{\text{CP}} = (0.30 \pm 0.91 \pm 0.61)\% \]

Consistent with no-CPV hypothesis

Main systematic uncertainty arises from limited simulation sample-size.

Results consistent varying data-taking period (centre-of-mass energy) and magnet polarity
A^{CP} in $D^0 \rightarrow K_s^0 K_s^0$

- Search of CPV in decay channels with high statistics not conclusive
- Different approach: search CPV in decay channels where amplitudes are suppressed

 ➢ $D^0 \rightarrow K_s^0 K_s^0$, where A^{CP} could be enhanced at a level of ~1%

 B.R. ($D^0 \rightarrow K_s^0 K_s^0$) = $(1.8 \pm 0.4) \times 10^{-4}$

Previous measurements

<table>
<thead>
<tr>
<th>$A^{CP}(K_s^0 K_s^0)$ (%)</th>
<th>Yield</th>
<th>Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>-23. ± 19.</td>
<td>65 ± 14</td>
<td>CLEO</td>
</tr>
<tr>
<td>-2.9 ± 5.2 ± 2.2</td>
<td>635 ± 74</td>
<td>LHCb Run-1</td>
</tr>
<tr>
<td>-0.02 ± 1.53 ± 0.17</td>
<td>5399 ± 87</td>
<td>Belle</td>
</tr>
</tbody>
</table>

CLEO PRD 63 (2001) 071101
LHCb (Run1) JHEP 10 (2015) 055
Belle PRL 119 (2017) 171801

[arXiv:1806.01642]
A_{CP} in D^0 \rightarrow K_S^0 K_S^0

- D^{*+} \rightarrow D^0 \pi^+ decay used to tag D^0
- To remove production and detection asymmetries, D^0 \rightarrow K^+ K^- is used as a calibration channel

\[\Delta A^{CP} \equiv A_{raw}(K_S^0 K_S^0) - A_{raw}(K^+ K^-) = A^{CP}(K_S^0 K_S^0) - A^{CP}(K^+ K^-). \]

\[A^{CP}(K_S^0 K_S^0) = \Delta A^{CP} + A^{CP}(K^+ K^-). \]

Independently measured by LHCb with a precision of \sim 0.1%
PLB767(2017)177
A^{CP} in $D^0 \rightarrow K^0_S K^0_S$

- $D^{*+} \rightarrow D^0 \pi^+$ decay used to tag D^0
- To remove production and detection asymmetries $D^0 \rightarrow K^+ K^-$ is used as a calibration channel

\[
\Delta A^{\text{CP}} \equiv A^{\text{raw}}(K^0_S K^0_S) - A^{\text{raw}}(K^+ K^-) \\
= A^{\text{CP}}(K^0_S K^0_S) - A^{\text{CP}}(K^+ K^-).
\]

\[A^{\text{CP}}(K^0_S K^0_S) = \Delta A^{\text{CP}} + A^{\text{CP}}(K^+ K^-)\]

Independently measured by LHCb with a precision of $\sim 0.1\%$

PLB767(2017)177

- Data samples collected in 2015-2016 ($\sim 2\text{fb}^{-1}$)
 - **LL** sample: both K^0_S are reconstructed from Long tracks
 - **LD** sample: one K^0_S is Long and the other one is Downstream
A^{CP} in $D^0 \rightarrow K_S^0 K_S^0$

- A^{raw} extracted with a fit to $\Delta m = m(D^*) - m(D^0)$ distribution. **Total yields:** 1067 ± 41

Results

Consistent with no-CPV hypothesis and previous results. Main systematic uncertainty arises from fit model choice.
First observation of the rarest charm decays, agreement with SM

Now measured **angular and CP asymmetries** on data samples of 2011-2016 (5 fb$^{-1}$)

Asymmetries sensitive to SD in full range due to SD-LD interference

- negligible SM contribution with current precision
- O(few %) predictions for some NP models

Asymmetries compatible with zero, i.e. with SM prediction

No dependence on dimuon mass

Preliminary results

$D^0 \rightarrow \pi^+ \pi^- \mu^- \mu^+$:

$A_{CP} = (4.9 \pm 3.8 \pm 0.7)\%$

$D^0 \rightarrow K^+ K^- \mu^- \mu^+$:

$A_{CP} = (0 \pm 11 \pm 2)\%$

Further details on Jolanta Brodzicka presentation on “Rare Charm”
Mixing and indirect CPV

- Mass eigenstates linear combination of flavor eigenstates

\[|D_{1,2}\rangle = p|D^0\rangle \pm q|\bar{D}^0\rangle \quad \text{Mixing} \]

\[x \equiv \Delta m / \Gamma \]
\[y \equiv \Delta \Gamma / 2\Gamma \]

Experimental status

- No evidence for non-zero Δm (x)
- No evidence for CP violation in mixing or interference (q/p ≠ 1)
Mixing parameters and search for CPV in $D^0 \rightarrow K^+\pi^-$

[PRD 97(2018) 031101]

- Data sample: 5fb$^{-1}$ (2011-2016)
- Used tagged $D^0 \rightarrow K^+\pi^-$ decays
- Measured the time dependent ratio of WS $D^0 \rightarrow K^+\pi^-$ and RS $D^0 \rightarrow K^-\pi^+$ decay rates

$$R(t) = \frac{N(D^0 \rightarrow K^+\pi^-)}{N(D^0 \rightarrow K^-\pi^+)}$$

$$R(t) \approx R_D + \sqrt{R_D} y' \frac{t}{\tau} + \frac{x'^2 + y'^2}{4} \left(\frac{t}{\tau} \right)^2$$

- Approximation for $x, y \ll 1$
- τ is the average D^0 lifetime
- R_D is the ratio of suppressed to favored decay rates
- δ is the strong-phase difference between suppressed and favored amplitudes

$\begin{align*}
x' &\equiv x \cos \delta + y \sin \delta \\
y' &\equiv y \cos \delta - x \sin \delta
\end{align*}$
Mixing parameters and search for CPV in $D^0 \rightarrow K^+\pi^-$

- Data sample: 5fb$^{-1}$ (2011-2016)
- Used tagged $D^0 \rightarrow K^+\pi^-$ decays
- Measured the time dependent ratio of WS $D^0 \rightarrow K^+\pi^-$ and RS $D^0 \rightarrow K^-\pi^+$ dominated by CF amplitude

$$R(t) = \frac{N(D^0 \rightarrow K^+\pi^-)}{N(D^0 \rightarrow K^-\pi^+)}$$

$$R^\pm(t) = R_D^\pm + \sqrt{R_D^\pm} y'^\pm t + \frac{(x'^\pm)^2 + (y'^\pm)^2}{4} t^2$$

Initial D^0/\bar{D}^0

$R_D^+ \neq R_D^- \rightarrow$ Direct CPV

$x'^+ \neq x'^- (y'^+ \neq y'^-) \rightarrow$ Indirect CPV
Mixing parameters and search for CPV in $D^0 \rightarrow K^+\pi^-$

- R^\pm determined in 13 decay-time bins, fitting Δm distribution
- Cuts applied to suppress problematic backgrounds, as:
 - ‘Ghost’ pions from mismatched track segments before and after the magnet
 - Possible peak in Δm distribution
 - Wrong charge 50% of time: RS \rightarrow WS migration
 - Backgrounds from mis-ID of D^0 daughters
 - Contamination from secondary decays: the D^* is not coming from the primary vertex, but from a b-hadron decay

![Graphs showing data and fit](image)

- 1.8 $\times 10^8$ RS events
- 7.2 $\times 10^5$ WS events
Fitted efficiency-corrected data to extract (x'^\pm,y'^\pm,R'^\pm_D) under three different hypotheses

- Main systematic uncertainty: residual secondary decays in the final sample
Mixing parameters and search for CPV in $D^{0} \rightarrow K^{+}\pi^{-}$

Results

- Fitted efficiency-corrected data to extract $(x'^{\pm}, y'^{\pm}, R_{D}^{\pm})$ under three different hypotheses
- Main systematic uncertainty: residual secondary decays in the final sample

\[
A_{D} = \frac{R_{D}^{+} - R_{D}^{-}}{R_{D}^{+} + R_{D}^{-}} = (-0.1 \pm 8.1(\text{stat}) \pm 4.2(\text{syst})) \times 10^{-3}
\]

Direct CPV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value $\times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{D}^{+}</td>
<td>3.454 ± 0.040 ± 0.020</td>
</tr>
<tr>
<td>y'^{+}</td>
<td>5.01 ± 0.64 ± 0.38</td>
</tr>
<tr>
<td>$(x'^{+})^{2}$</td>
<td>0.061 ± 0.032 ± 0.019</td>
</tr>
<tr>
<td>R_{D}^{-}</td>
<td>3.454 ± 0.040 ± 0.020</td>
</tr>
<tr>
<td>y'^{-}</td>
<td>5.54 ± 0.64 ± 0.38</td>
</tr>
<tr>
<td>$(x'^{-})^{2}$</td>
<td>0.016 ± 0.033 ± 0.020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value $\times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{D}</td>
<td>3.454 ± 0.028 ± 0.014</td>
</tr>
<tr>
<td>y'</td>
<td>5.28 ± 0.45 ± 0.27</td>
</tr>
<tr>
<td>(x'^{2})</td>
<td>0.039 ± 0.023 ± 0.014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value $\times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{D}^{+}</td>
<td>3.454 ± 0.040 ± 0.020</td>
</tr>
<tr>
<td>y'^{+}</td>
<td>5.01 ± 0.64 ± 0.38</td>
</tr>
<tr>
<td>$(x'^{+})^{2}$</td>
<td>0.061 ± 0.032 ± 0.019</td>
</tr>
<tr>
<td>R_{D}^{-}</td>
<td>3.454 ± 0.040 ± 0.020</td>
</tr>
<tr>
<td>y'^{-}</td>
<td>5.54 ± 0.64 ± 0.38</td>
</tr>
<tr>
<td>$(x'^{-})^{2}$</td>
<td>0.016 ± 0.033 ± 0.020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value $\times 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{D}</td>
<td>3.454 ± 0.028 ± 0.014</td>
</tr>
<tr>
<td>y'</td>
<td>5.28 ± 0.45 ± 0.27</td>
</tr>
<tr>
<td>(x'^{2})</td>
<td>0.039 ± 0.023 ± 0.014</td>
</tr>
</tbody>
</table>
Results

- Fitted efficiency-corrected data to extract \((x'^\pm,y'^\pm,R'^\pm_D)\) under three different hypotheses
- Main systematic uncertainty: residual secondary decays in the final sample

\[
A_D = \frac{R_D^+ - R_D^-}{R_D^+ + R_D^-} = (-0.1 \pm 8.1(\text{stat}) \pm 4.2(\text{syst}) \times 10^{-3}
\]

Direct CPV

No evidence for CPV

Direct and indirect CPV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value x10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R^+_D)</td>
<td>3.454 ± 0.040 ± 0.020</td>
</tr>
<tr>
<td>(y'^+)</td>
<td>5.01 ± 0.64 ± 0.38</td>
</tr>
<tr>
<td>((x'^+))</td>
<td>0.061 ± 0.032 ± 0.019</td>
</tr>
<tr>
<td>(R^-_D)</td>
<td>3.454 ± 0.040 ± 0.020</td>
</tr>
<tr>
<td>(y'^-)</td>
<td>5.54 ± 0.64 ± 0.38</td>
</tr>
<tr>
<td>((x'^-))</td>
<td>0.016 ± 0.033 ± 0.020</td>
</tr>
</tbody>
</table>

No direct CPV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value x10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_D)</td>
<td>3.454 ± 0.028 ± 0.014</td>
</tr>
<tr>
<td>(y'^+)</td>
<td>5.01 ± 0.48 ± 0.29</td>
</tr>
<tr>
<td>((x'^+))</td>
<td>0.061 ± 0.026 ± 0.016</td>
</tr>
</tbody>
</table>

No CPV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value x10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_D)</td>
<td>3.454 ± 0.028 ± 0.014</td>
</tr>
<tr>
<td>(y')</td>
<td>5.28 ± 0.45 ± 0.27</td>
</tr>
<tr>
<td>(x'^2)</td>
<td>0.039 ± 0.023 ± 0.014</td>
</tr>
</tbody>
</table>
Conclusion

❖ Reached unprecedented precision on D^0-\bar{D}^0 mixing parameters

➢ $y' \rightarrow 5 \times 10^{-4}$ $x'^2 \rightarrow 3 \times 10^{-5}$ (still compatible with 0 within uncertainty)

❖ The search for CP violation in charm decays continues!

❖ With growing data samples **LHCb is reaching the precision to observe CP violation** as expected by SM

❖ New results from Run1 and Run2 data samples are coming

❖ Stay tuned!
Backup slides
The LHCb experiment

- **Calorimeters**: particle identification
- **Cherenkov detector**: particle identification
- **Muon chambers**
- **Vertex detector (VELO)**
- **Magnet**
- **Tracking stations**: trajectory of charged particles → momentum
\[A^{\text{CP}} \text{ in } D^0 \rightarrow K^0_S K^0_S \]

- \(A^{\text{raw}} \) extracted with a fit to \(\Delta m = m(D^*) - m(D^0) \) distribution
- Peaking background reduced with cut based selection, e.g.
 - \(D^0 \rightarrow K^0_S \pi^+ \pi^- \), reduced performing selections on \(m(K^0_S) \) and flight distance
- Combinatorial background reduced using kNN classifier
- Results on LL and LD sample and on the two separate magnet polarities compatible within 2\(\sigma \)