Monte-Carlo based performance assessment of ASACUSA’s antihydrogen detector

Y. Nagata a,b,4, N. Kuroda c, B. Kolbinger d, M. Fleck d,1, C. Malbrunot d,e, V. Mäckel d,2, C. Sauerzopf d,3, M.C. Simon d, M. Tajima e,4, J. Zmeskal d, H. Breuker e, H. Higaki f, Y. Kanai g, Y. Matsuda c, S. Ulmer b, L. Venturelli h,1, E. Widmann d, Y. Yamazaki b

a Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, 162-8601 Tokyo, Japan
b Ulmer Fundamental Symmetries Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama, Japan
c Institute of Physics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo, Japan
d Stefan-Meyer-Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Wien 1090, Austria
e CERN, Genève 1211, Switzerland
f RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama, Japan
g Dipartimento di Ingegneria dell’Informazione, Università di Brescia, Brescia 25133, Italy
h Istituto Nazionale di Fisica Nucleare, Sez. di Pavia, I-27100 Pavia, Italy

A R T I C L E I N F O
Keywords:
Antihydrogen
Antimatter
Detector
Calorimeter
Tracker

A B S T R A C T
An antihydrogen detector consisting of a thin BGO disk and a surrounding plastic scintillator hodoscope has been developed. We have characterized the two-dimensional positions sensitivity of the thin BGO disk and energy deposition into the BGO was calibrated using cosmic rays by comparing experimental data with Monte-Carlo simulations. The particle tracks were defined by connecting BGO hit positions and hits on the surrounding hodoscope scintillator bars. The event rate was investigated as a function of the angles between the tracks and the energy deposition in the BGO for simulated antiproton events, and for measured and simulated cosmic ray events. Identification of the antihydrogen Monte Carlo events was performed using the energy deposited in the BGO and the particle tracks. The cosmic ray background was limited to 12 mHz with a detection efficiency of 81%. The signal-to-noise ratio was improved from 0.22 s−1/2 obtained with the detector in 2012 to 0.26 s−1/2 in this work.

1. Introduction

Recently, antihydrogen (H̄) atoms have been produced [1] in a unique cusp trap [2–4] developed for the in-flight hyperfine spectroscopy of ground state H atoms [5–7]. The most recent progress is reported in [8–10]. In 2012, the ASACUSA Cusp collaboration developed a H̄ detector consisting of a BGO (Bi4Ge3O12) scintillator disk in combination with a single anode photomultiplier (PMT) and 5 plastic scintillator plates. The detector was able to reject cosmic backgrounds with a high efficiency [11]. In order to further improve the background rejection efficiency, we have developed a new H̄ detector. The single anode PMT has been replaced by 4 multi-anode PMTs (MAPMTs) for 2D photon readout of the BGO. The five plastic scintillators were replaced by a two-layer hodoscope with 32 plastic scintillator bars per layer to determine charged particle tracks with higher resolution [12].

2. H̄ detector

Fig. 1 shows a schematic diagram of the structure of the new H̄ detector consisting of the thin BGO disk and the hodoscope. The BGO disk has a diameter of 90 mm and a thickness of 5 mm and is housed on the vacuum side (10−7 Pa) of a UHV viewport. The front surface of the BGO disk was coated with a carbon layer of thickness 0.7 μm to reduce multireflections of the light from scintillation on the surface. It was found that the carbon coating improved the position resolution by a factor of ~2 in our previous device [13]. To achieve a position sensitive readout, 4 MAPMTs (Hamamatsu H8500C) each having 8 × 8 anodes with effective area of 49 mm × 49 mm were directly placed on the view port glass as shown in Fig. 2. The output of 8 × 8 anodes were amplified, digitized and stored by an amplifier unit (Clear Pulse 80190) which was...
Fig. 1. Cross section of the \bar{H} detector along the beam axis (a) and perpendicular to the \bar{H} beam axis (b).

Fig. 2. Three quarter section view of the 2D sensitive BGO detector.

A dedicated model for the H8500C and included 8×8 charge amplifiers and analogue-to-digital converters with 12 bit resolution.

The hodoscope consists of two layers of 32 plastic scintillator bars arranged in an octagonal configuration [12]. The scintillator bars are $300 \text{ mm} \times 20 \text{ mm} \times 5 \text{ mm}$ for the inner layer and $450 \text{ mm} \times 35 \text{ mm} \times 5 \text{ mm}$ for the outer. With face to face distances of 200 mm and 350 mm respectively for the inner and outer layers (see Fig. 1(a)). The solid angle covered by the scintillator bars in units of 4π seen from the center of the BGO is $\omega \sim 80\%$. Silicon photomultipliers (SiPM, KETEK PM3350TS) were connected to both ends of each bar. The output pulses from the SiPMs was amplified by dedicated front end modules described in detail elsewhere (see Ref. [14]) and recorded by 128 channels waveform digitizers (CAEN V1742).

Meshes to which a high voltage can be applied is installed at the upstream of the detector to reject the antiprotons leaking from the cusp trap for the measurement of the \bar{H} atoms [15].

3. 2D distribution of cosmic rays

To obtain the relative sensitivity of each channel, 4 MAPMTs were assembled and irradiated by pulsed (200 ns width) light from a LED with the peak wavelength of 470 nm (see also Ref. [13]), the peak emission wavelength of the BGO scintillation light was 480 nm. The voltages applied to the MAPMTs were adjusted such that the total output charge of each MAPMT were equal.

Fig. 3(a) shows an example of a 2D map of averaged output charges of one of the 4 MAPMTs investigated by LED light. (b) Distribution of the gain ratio between the measured values and the data sheet values for each channel.

The measured values and those from the data sheet for each anode, the distribution of the gain ratio as shown in Fig. 3(b) was obtained. The standard deviation of this distribution is around 5%.

Fig. 4(a) and (b) show the 2D charge distribution for two example cosmic rays events after offline gain matching of the individual MAPMT channels described above. In these examples, the BGO surface has been penetrated nearly perpendicularly (a) or at grazing incidence (b). These figures demonstrate that position sensitive readout has been successfully implemented using 2D MAPMTs.

In order to reconstruct particle tracks (to be discussed in detail later), we define the position of a hit on the BGO as the center of the anode giving the highest output charge. When the hit positions observed in the 2D distribution are outside of the BGO, such events are removed in the analysis because they are probably Čerenkov light generated in the optics of the MAPMT or the viewport when high energy charged particles pass through them. The total charge Q is obtained by summing the charges from all channels (see Fig. 4(a) and (b)).

4. Energy calibration of the BGO detector

For the energy calibration, cosmic rays were measured and the charge distribution $f(Q)$ was compared with the energy deposition distribution $g(E)$ calculated by a Monte-Carlo simulation using the Geant4 toolkit[16]. Blue solid circles in Fig. 5 show $f(Q)$ for cosmic rays events when more than 2 inner hodoscope bars are hit in any coincident combination. A bar is considered to be ‘hit’ when there is a coincidence between the signals of the upstream and downstream SiPMs connected to the bar.

The simulation includes the BGO detector together with the viewport and the vacuum duct (see Fig. 1(a)). Cosmic rays are generated by the CRY package [17]; Čerenkov light however is not included. $g(E)$

5 Geant4.9.6 Patch-02 was used.
is convoluted with the energy resolution which is assumed to be proportional to \sqrt{E} [18], i.e.,
\[
G(E) = \int g(E') \frac{1}{\sqrt{2\pi\Delta E'}} e^{-\frac{(E-E')^2}{2\Delta E^2}} dE',
\]
where δ is a fitting parameter. To compare $f(Q)$ and $G(E)$, the relation $E = \eta Q + E_c$ is assumed, where η and E_c are fitting parameters. E corresponds to the contribution of Čerenkov light generated in the BGO and the glass. $G(E)$ is fit to $f(Q)$ using least squares method in the energy range from 4.5 to 50 MeV with 3 free parameters α, η, and E_c. The result is shown by the red line in Fig. 5. The goodness of the fit is given by $\chi^2/\nu = 1.65$ for $\alpha = 0.52 \sqrt{\text{MeV}}$, $\eta = 2.5$ in units proportional to charge over energy and $E_c = 0.50 \text{ MeV}$. The discrepancy between the experiment and the simulation at $E < 4 \text{ MeV}$ would be caused by Čerenkov light. The fitting parameter E_c was introduced to compensate this discrepancy.

The cosmic ray flux distribution is known to follow $\cos^2 \theta_2$, where θ_2 is the zenith angle. In this case, the average path length of cosmic rays in the BGO is evaluated to be approximately 8 mm. Considering that the energy deposited by a minimum ionizing particle (MIP) in the BGO is 9.0 MeV/cm [19], the peak at around 7 MeV in Fig. 5 is attributed to MIPs. As explained below (see Section 5.3), only events for $E > E_{ih} = 15 \text{ MeV}$ are considered in the following sections.

5. Identification of \bar{H} atoms and cosmic ray suppression

Fig. 6 shows a simplified view of the \bar{H} detector where the signals from the 4 MAPMTs (shown in the square in the center) and the hodoscope bars (the outermost octagonal arrangement) for a typical cosmic event in the experiment are overlaid.

In this example, a spot like pattern is seen on the BGO. Green-colored hodoscope bars are simultaneously hit by the cosmic ray. The red shaded area in the upper left side shows the possible spatial range of the trajectory of the charged particle.

As a best guess, the bisector of the shaded area is taken to define a track which is shown by the thick black line. In the lower right side, 2 neighboring hodoscope bars are hit, in this case, the red shaded area is defined from the edges of the neighboring hodoscope bars and the BGO hit position. The particle track is also defined by a bisector of the shaded area. In this example, the number of tracks is $k = 2$.

Solid and dashed lines in Fig. 7 show the experimental and simulated results of cosmic ray count rate ν_k as a function of k. The highest ν_k is observed for $k = 2$ and decreases by more than one order of magnitude for each additional unit of k. The track number analysis for simulations of antiprotons (\bar{p}) irradiating the BGO disk uniformly with the typical count rate of the \bar{H} atoms in the experiment $I_{\bar{p}} = 0.1 \text{ Hz}$ results in the dash–dot (green online) curve (ν_k^ℓ).

In this simulation, the CHIPS model was used in Geant4 for \bar{p} annihilation. This model was previously tested with respect to the energy deposition analysis for \bar{H} annihilation in the BGO [1,11]. The multiplicity of annihilation products from \bar{p} annihilation was studied using an emulsion detector and agreed with CHIPS results except for annihilation with heavy atoms\(^6\) [20].

Also the ν_k^ℓ curve has a maximum at $k = 2$, although its evolution is much less dependent on k than ν_k. When a \bar{p} annihilates with a nucleus, approximately 3 charged and 2 neutral pions are produced on average [21]. Taking into account the charged pions and the solid angle ω covered by the hodoscope, ν_k^ℓ is estimated to be $3\omega^2(1-\omega)I_{\bar{p}} \sim 0.04 \text{ Hz}$ which can be compared to $\nu_k^\ell \sim 0.03 \text{ Hz}$ in Fig. 7.

As will be discussed in Section 5.4, ν_k^ℓ can be decreased considerably from the dashed line and is around $5 \times 10^{-3} \text{ Hz}$ as shown by the open circles in Fig. 7 for $k = 1, 2$ and 3.

Alternatively, ν_k^ℓ does not decrease very much as seen from the open triangles. In these cases, ν_k^ℓ is well below ν_k. Further to this, ν_k^ℓ is more than one order of magnitude lower than the open circles and is negligibly small. Therefore we can assume that events for $k \geq 4$ can be reasonably attributed to \bar{p} annihilation. In the following subsections, the events for $k = 2, k = 3$ and then $k = 1$ are considered.

5.1. Events for $k = 2$

To analyze 2-track events, the track direction is defined by the angle measured anticlockwise from a horizontal line on the $x-y$ plane as shown in Fig. 8. The tracks are numbered in ascending order with increasing angle. The corresponding angles of the 1st and the 2nd tracks are named θ_1 and θ_2 ($\theta_1 < \theta_2$), respectively. Further we define $\theta_12 = \theta_2 - \theta_1$.

Fig. 9(a) and (b) compare the 2D distribution of cosmic events as a function of θ_1 and θ_12 as obtained from experiment and simulation, respectively.

It can be seen that the simulation result reproduces the experimental result well. A strong ridge is observed at $\theta_12 \sim 180$ degrees which

\(^6\) It is noted that there are no systematic studies of both multiplicity of annihilation products, and their energy deposition for \bar{p} annihilation at rest. To investigate this, fragmentation studies of antiproton-nucleus annihilation are being performed using a Timepix3 detector within the ASACUSA collaboration. ---
corresponds to cosmic rays passing straight through the detector. On the other hand, in \(\theta_i \) direction, a broad distribution, centered at 90 degrees, reflects the cosmic ray flux following a \(\cos \theta_i \) distribution.

Fig. 10(a) shows the result of the simulation of the 2D distribution of \(N_{ij}^c \) as a function of \(\theta_i \) and \(\theta_{ij} \). The distribution is very broad, as is expected from \(p \) annihilations at low energy.

The \(N_{ij}^c \) background can be decreased by removing events inside an ellipse defined by semi-minor axis \(\Delta \theta_2 \) and semi-major axis of 90 degrees in \(\theta_{ij} \) and \(\theta_i \), respectively (see Fig. 9). For example, the \(N_{ij}^p \) background is reduced by one order of magnitude for \(\Delta \theta_2 = 10 \) degrees. Using the same cut, only about 10% of the \(\mu \)s are removed because of the different distributions of Figs. 9 and 10.

It is noted that in both Fig. 9(a) and (b), we observe an additional small peak at \(\theta_i \sim 270 \) degrees and \(\theta_{ij} \sim 40 \) degrees. Investigating the corresponding events inside the dotted half circle in Fig. 9(b), the simulation shows that those events are caused by incident cosmic rays of \(\gamma \) rays (\(\sim 80\% \)), \(e^+ \) or \(e^- \) (\(\sim 10\% \)), and muons or \(\mu^- \) (\(\sim 10\% \)). Therefore it seems that the main component of this peak is attributed to the \(\gamma \) rays producing \(e^-+e^+ \) pairs in the BGO. The fraction of these events is 1% of the total events in Fig. 9(a) and (b).

In comparison, although the distribution of \(N_{ij}^p \) in Fig. 10(a) is very broad, it has a peak at \(\theta_{ij} \sim 180 \) degrees as shown in Fig. 10(b) which is the projection of (a) onto the \(\theta_{ij} \) axis.

The preference at 180 degrees can be explained if we consider a specific type of event, one with three charged pions. When two charged pions hit the hodoscope, with the third pion escaping in a direction close to the beam axis, momentum conservation will favor \(\theta_{ij} \) around 180 degrees. These (real) events are of course removed by the elliptical cut introduced to remove cosmic events.

5.2 Events for \(k = 3 \)

The track directions for \(k = 3 \) are defined in the same manner in the case of \(k = 2 \). Because 3 tracks are involved, there are 3 ways to choose track pairs, which can then be described in an equivalent manner to 2-track events as shown in Fig. 11(a)–(c).

Fig. 12(a) and (b) show the experimental and simulated results of the 2D distributions of \(N_{ij}^c \), obtained by summing 3 distributions of \(\theta_{ij} \) vs. \(\theta_1 \), \(\theta_{ij} \) vs. \(\theta_2 \), and \(\theta_{ij} \) vs. \(\theta_3 \). Every event is represented by 3 points corresponding to Fig. 11(a)–(c) on the plot to conveniently summarize them. The simulation reproduces the experiment very well.

A peak at \(\theta_{ij} \sim 180 \) degrees is observed, which is broader than the peak in Fig. 9(a) and (b). By investigating the corresponding events in the simulation, it was found that a cosmic ray from above generates recoil electrons emitted downward in the BGO which forms the broad peak (see Fig. 11(a) and (b)). Another peak is seen at \(\theta_i \sim 270 \) degrees which is formed by the recoil electron together with the incident cosmic ray (see Fig. 11(c)).

Fig. 13 shows the simulation result of \(N_{ij}^p \) as per Fig. 12(a) and (b) for \(N_{ij}^c \). The distribution is more evenly populated than \(k = 2 \).

Equivalently to the case of \(k = 2 \), cosmic ray events are expected to be reduced by removing events inside the ellipse (see Fig. 12) defined by semi-minor axis \(\Delta \theta_2 \) and semi-major axis of 90 degrees in \(\theta_i \) and \(\theta_{ij} \), respectively. Whilst simultaneously not decreasing \(N_{ij}^c \) very much. It is noted that the peak at \(\theta_i \sim 270 \) degrees in Fig. 12(a) and (b) is not present when the events inside the ellipse are removed, because the events of \(\theta_i \sim 270 \) degrees (see also Fig. 11(c)) are the reflection of the events of \(\theta_{ij} \sim 180 \) degrees (see also Fig. 11(a) and (b)).

5.3 Signal-to-noise ratio (SNR) for \(k \geq 2 \)

The total rate of cosmic events after the data cut was obtained by taking the sum of \(N_{ij}^c \) for \(k \) and is defined by \(N_{ij}^c = \sum_{k>2} N_{ij}^c \). Fig. 14(a) and (b) show the experimental and simulated results of the 2D distributions of \(N_{ij}^c \), respectively, as a function of \(\Delta \theta_2 \) and \(\Delta \theta_1 \).
Y. Nagata et al.

The simulations reproduce the experimental data well. To evaluate the difference between the data and the simulation quantitatively, (c) and (d) Experimental results of \(N^2 \) as a function of \(\Delta \theta \), where \(\Delta \theta \) is defined by \(\Delta \theta = \theta_2 - \theta_1 \). The difference between the experimental and simulated results is less than 10%. In Fig. 13, the ellipse is defined as in Fig. 12.

The maximum \(x_2 \) is 0.24 \(s^{-1} \) at \(\Delta \theta = 0 \) degrees and \(\theta_1 = 0 \) degrees with \(N^2 = 6.9 \) mHz and \(c_2 = 65\% \). As seen in Fig. 15(b), to maximize \(x_2 \), \(\Delta \theta \) should be 0 for all values of \(\theta_1 \). This suggests that all events of \(N^2 \) can be identified as \(\beta \)s.

The signal-to-noise ratio (SNR) by \(\text{SNR} = \frac{N^2}{\sigma^2} \) is used for background suppression.

Fig. 12. (a) Experimental results of \(N^2 \) obtained by summing 3 distributions of \(\theta_2 \), \(\theta_3 \), and \(\Delta \theta \) as a function of \(\theta_1 \). The bin widths are 6 degrees on both axes. The ellipse is defined by semi-minor axis \(\Delta \theta \) and semi-major axis of 90 degrees in \(\theta_1 \) and \(\theta_2 \), respectively, and is used for background suppression.

Fig. 13. Result from simulations of \(N^2 \) obtained by summing 3 distributions of \(\theta_2 \), \(\theta_3 \), \(\theta_4 \) and \(\Delta \theta \). The bin widths are 6 degrees on both axes. The ellipse is defined as in Fig. 12.

Fig. 11. Combinations of 2 out of 3 tracks. Angles \(\theta_1 \), \(\theta_2 \), \(\theta_3 \), and \(\theta_4 \) are defined.
respectively, as a function of k.

Events for k are broad. Background from the distribution of θ seems to follow a more triangular shape. Fig. 17(b) shows the 2D distribution of $\Delta \theta$ as a function of θ and E. (b) is x_1 as a function of $\Delta \theta$ and E. In these figures, E_{th} for $k \geq 2$ is 15 MeV. The bin widths are 1 degree on both axes.

5.4. Events for $k = 1$ and SNR

Fig. 17(a) shows the 2D distribution of N^i_1 as a function of the energy E deposited in the BGO and of θ_1. We observe a ridge at $E \sim 7$ MeV which corresponds to the MIP peak. In the θ_1 direction, the broad distribution has two maxima, at 90 and at 270 degrees; its shape can be attributed to the cosmic ray flux distribution of $\cos \theta_1^2$. The shape of the ridge appears to be an ellipse. However, the tail of the ridge seems to follow a more triangular shape. Fig. 17(b) shows the 2D distribution of N^i_1 as a function of E and θ_1. The distribution is very broad. Background from N^i_1 is expected to be reduced by removing events inside the triangular regions defined in Fig. 17(a) and (b).

Fig. 18(a) and (b) show the 2D distributions of N^i_1 and ϵ_1 ($k \geq 1$), respectively, as a function of $\Delta \theta_1$ and ΔE. It is seen that N^i_1 and ϵ_1 decrease gradually as $\Delta \theta_1$ and ΔE increase. Fig. 18(c) shows x_1 as a function of $\Delta \theta_1$ and ΔE. The maximum of x_1 of 0.26 s$^{-1/2}$ is reached at $\Delta \theta_1 = 14$ degrees and $\Delta E = 93$ MeV with $N^i_1 = 12$ mHz and $\epsilon_1 = 81\%$. This is larger than the maximum value of x_2, therefore, the analysis including the events for $k = 1$ improves the SNR. Comparing with the H detector developed in 2012 with $x = 0.22$ s$^{-1/2}$ with the cosmic count rate of 4 mHz and a detection efficiency of 50% for $I_0 = 0.1$ Hz, the detector described in this work improves upon the SNR and the detection efficiency.

6. Conclusion

We have developed a H detector consisting of a thin BGO disk and a hodoscope. We have measured hit positions of cosmic rays in the BGO disk and confirmed that the thin disk with a 2D readout by MAPMTs enables position sensitivity. The energy deposition in the BGO was calibrated by comparing cosmic ray data with Geant4 simulations. Charged particle tracks were determined by connecting the hit position on the BGO and hits on hodoscope bars. By removing the cosmic rays passing through the detector using the cut on ΔE, $\Delta \theta$, and E_{th}, the background was reduced efficiently to $N^i_2 = 12$ mHz with a detection efficiency of $\epsilon_1 = 81\%$. The SNR was improved to $x_1 = 0.26$ s$^{-1/2}$ which was compared to 0.22 s$^{-1/2}$ for the detector used in 2012.

Acknowledgments

We would like to thank Tomohiro Kobayashi for the carbon coating on the BGO disk. This work was supported by the Grant-in-Aid for Specially Promoted Research 24000008 of Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Special Research Projects for Basic Science of RIKEN, European Research Council under European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement (291242) and the Austrian Ministry of Science and Research, Austrian Science Fund (FWF): W1252-N27.

References