Observation of $B^0 \rightarrow D^{(*)0}\phi$ and search for $B^0 \rightarrow D^{0}\phi$ decays

R. Aaij et al.*

(LHCb Collaboration)

(Received 6 July 2018; published 30 October 2018)

The first observation of the $B^0 \rightarrow D^{(*)0}\phi$ decay is reported, with a significance of more than seven standard deviations, from an analysis of $p\bar{p}$ collision data corresponding to an integrated luminosity of $3 \, fb^{-1}$, collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV. The branching fraction is measured relative to that of the topologically similar decay $B^0 \rightarrow D^0\pi^+\pi^-$ and is found to be $\mathcal{B}(B^0 \rightarrow D^{(*)0}\phi) = (3.7 \pm 0.5 \pm 0.3 \pm 0.2) \times 10^{-5}$, where the first uncertainty is statistical, the second systematic, and the third from the branching fraction of the $B^0 \rightarrow D^0\pi^+\pi^-$ decay. The fraction of longitudinal polarization in this decay is measured to be $f_L = (73 \pm 15 \pm 4)\%$. The most precise determination of the branching fraction for the $B^0 \rightarrow D^{0}\phi$ decay is also obtained, $\mathcal{B}(B^0 \rightarrow D^{0}\phi) = (3.0 \pm 0.3 \pm 0.2 \pm 0.2) \times 10^{-5}$. An upper limit, $\mathcal{B}(B^0 \rightarrow D^{0}\phi) < 2.0 \times 10^{-6}$ at 90% (95%) confidence level is set. A constraint on the $\omega - \phi$ mixing angle δ is set at $|\delta| < 5.2^\circ (5.5^\circ)$ at 90% (95%) confidence level.

DOI: 10.1103/PhysRevD.98.071103

The precise measurement of the angle γ of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle [1,2] is a central topic in flavor physics experiments. Its determination at the subdegree level in tree-level open-charm b-hadron decays is theoretically clean [3,4] and provides a standard candle for measurements sensitive to new physics effects [5]. In addition to the results from the B factories [6], various measurements from LHCb [7–9] allow the angle γ to be determined with an uncertainty of around 5°. However, no single measurement dominates the world average, as the most accurate measurements have an accuracy of $O(10^\circ-20^\circ)$ [10,11]. Alternative methods are therefore important to improve the precision. Among them, an analysis of the decays $B^0 \rightarrow D^{(*)0}\phi$ open possibilities to offer competitive experimental precision on the angle γ [12–15], where the $D^{(*)0}$ meson can be partially reconstructed [16]. The tree-level Feynman diagrams for the $B^0 \rightarrow D^{(*)0}\phi$ decays are shown in Fig. 1(a). The inclusion of charge-conjugated processes is implied throughout the paper. The decay $B^0 \rightarrow D^0\phi$ was first observed by the LHCb collaboration [17] using a data sample corresponding to an integrated luminosity of 1 fb$^{-1}$, while no prior results exist for $B^0 \rightarrow D^{(*)0}\phi$ decays. The branching fraction $\mathcal{B}(B^0 \rightarrow D^0\phi)$ is $(3.0 \pm 0.8) \times 10^{-5}$ [17,18]. The $B^0 \rightarrow D^{(*)0}\phi$ decay is a vector-vector mode and can proceed through different polarization amplitudes. A measurement of its fraction of longitudinal polarization (f_L) is of particular interest because a significant deviation from unity would confirm previous results from similar color-suppressed B^0 decays [19,20], as expected from theory [21,22]. This also helps to constrain QCD models and to search for effects of physics beyond the Standard Model (see review of polarization in B decays in Ref. [18]).

The $B^0 \rightarrow D^0\phi$ decay can proceed by leading-order Feynman diagrams shown either in Fig. 1(b) or in Fig. 1(c), followed by $\omega - \phi$ mixing. The W-exchange decay is suppressed by the Okubo-Zweig-Iizuka (OZI) rule [23–25]. Assuming that the color-suppressed $B^0 \rightarrow D^0\omega$ decay dominates, the branching fraction of $B^0 \rightarrow D^0\phi$ is predicted and can be used to determine the mixing angle δ [26]. The relation between the branching fractions and mixing angle can be written as $\tan^2\delta = \mathcal{B}(B^0 \rightarrow D^0\phi) / \mathcal{B}(B^0 \rightarrow D^0\omega) \times \Phi(\omega)/\Phi(\phi)$, where $\Phi(\omega)$ and $\Phi(\phi)$ are the integrals of the phase-space factors computed over the resonant line shapes. A calculation, using a recent result on $\mathcal{B}(B^0 \rightarrow D^0\omega)$ [19] and taking into account phase-space factors, gives $\mathcal{B}(B^0 \rightarrow D^0\phi) = (1.6 \pm 0.1) \times 10^{-6}$. The ratio $\Phi(\omega)/\Phi(\phi) = 1.05 \pm 0.01$ is used, where the uncertainty comes from the limited knowledge regarding the shape parameters of the two resonances. The previous experimental upper limit on this branching fraction was $\mathcal{B}(B^0 \rightarrow D^0\phi) < 11.7 \times 10^{-6}$ at 90% confidence level (C.L.) [27]. The new measurement presented in this paper also allows the $\omega - \phi$ mixing angle to be determined [26,28].

In this paper, results on the $B^0 \rightarrow D^{(*)0}\phi$ decays are presented, where the ϕ meson is reconstructed through its
To improve the track secondary vertex with a large sum of the component full event reconstruction and requires a two-, three- or four-systems, followed by a software stage, which applies a stage, based on information from the calorimeter and muon detectors. The online event selection is covering the pseudorapidity range 7 (8) TeV.

The LHCb detector is a single-arm forward spectrometer decay to a $K^+K^−$ pair and the \bar{D}^0 meson decays to $K^+\pi^−$. The $B^0 \rightarrow \bar{D}^{*0}\phi$ decay is partially reconstructed without inclusion of the neutral pion or photon from the \bar{D}^{*0} meson decay. The analysis is based on a data sample corresponding to 3.0 fb$^{-1}$ of integrated luminosity, of which approximately one third (two thirds) were collected by the LHCb detector from pp collisions at a center-of-mass energy of 7 (8) TeV.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range 2 < η < 5, described in detail in Refs. [29,30]. The online event selection is performed by a trigger [31], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction and requires a two-, three- or four-track secondary vertex with a large sum of the component of the momentum transverse to the beam, p_T, of the tracks and a significant displacement from all primary pp-interaction vertices (PV).

The selection requirements for the $B^0 \rightarrow D^{(*)}\phi$ signals are the same as those used for the branching fraction measurements of $B^0 \rightarrow D^{0}K^+K^−$, as described in detail in Ref. [32]. The selection criteria are optimized using the $B^0 \rightarrow D^{0}\pi^+\pi^−$ decay as a normalization channel. Signal $B^0 \rightarrow D^{0}K^+K^−$ candidates are formed by combining D^0 candidates, reconstructed in the final states $K^+\pi^−$, with two additional particles of opposite charge, identified as kaons, whose tracks are required to be inconsistent with originating from a PV. They must have sufficiently high p and p_T and be within the fiducial acceptance of the two ring-imaging Cherenkov detectors [33] used for particle identification (PID) of charged hadrons. The D^0 decay products are required to form a good quality vertex with an invariant mass within 25 MeV/c2 of the known \bar{D}^0 mass [18]. The \bar{D}^0 and two kaon candidates must form a good vertex. The reconstructed D^0 and B vertices are required to be significantly displaced from any PV. To improve the B-candidate invariant-mass resolution, a kinematic fit [34] is used, constraining the \bar{D}^0 candidate invariant mass to its known value [18] and the B momentum to point back to the PV with smallest χ^2_{IP}, where χ^2_{IP} is defined as the difference in the vertex-fit χ^2 of a given PV reconstructed with and without the particle under consideration. By requiring the reconstructed \bar{D}^0 vertex to be displaced downstream from the reconstructed B^0 vertex, backgrounds from both charmless B decays and charmed mesons produced at the PV are reduced to a negligible level. Background from $B^0 \rightarrow D^*(2010)^+K^−$ decays is removed by requiring the reconstructed mass difference $m_{D^0π^-} − m_{D^*}$ not to be within ±4.8 MeV/c2 of its known value [18] after assigning the pion mass to the kaon. To further distinguish signal from combinatorial background, a multivariate analysis based on a Fisher discriminant [35] is applied. The discriminant is optimized by maximizing the statistical significance of $B^0 \rightarrow D^{0}\pi^+\pi^−$ candidates selected in a similar way. The discriminant uses the following information: the smallest values of χ^2_{IP} and p_T of the prompt tracks from the B-decay vertex; the B flight-distance significance; the $D\chi^2_{IP}$, and the signed minimum cosine of the angle between the direction of one of the prompt tracks from the B decay and the \bar{D}^0 meson, as projected in the plane perpendicular to the beam axis.

Candidate $B^0 \rightarrow D^0K^+K^−$ decays with invariant masses in the range [5000, 6000] MeV/c2 are retained. After all selection requirements are applied, less than 1% of the events contain multiple candidates, and a single candidate is chosen based on the fit quality of the B- and D-meson vertices and on the PID information of the \bar{D}^0 decay products. The effect due to the multiple candidate selection is negligible [36].

The distribution of the invariant mass of the $K^+K^−$ pair, $m_{K^+K^−}$, shown in Fig. 2, is obtained from a narrow window, $[2m_K, 2m_K + 90$ MeV/c$^2]$, covering the ϕ meson mass [18] and where m_K is the known kaon mass. An extended unbinned maximum-likelihood fit to the invariant-mass distribution of the ϕ candidates, $m_{K^+K^−}$, is performed to statistically separate ϕ signal from background by means of

![FIG. 1. Diagrams that contribute to the (a) color-suppressed $B^0 \rightarrow \bar{D}^{*0}/D^{*0}\phi$, (b) W-exchange OZI-suppressed $B^0 \rightarrow \bar{D}^0/D^0\phi$ and the (c) color-suppressed $B^0 \rightarrow D^0\omega$ decays.](image)
the sPlot technique [37, 38]. The ϕ meson invariant-mass distribution is modeled with a Breit-Wigner probability density function (PDF) convolved with a Gaussian resolution function. The width of the Breit-Wigner function is fixed to the known ϕ width [18]. The PDF for the background is a phase space factor $p \times q$ multiplied by a quadratic function $[1 + ax + b(2x^2 - 1)]$, where p and q are the momentum of the kaon in the K^+K^- rest frame and the momentum of the \bar{D}^0 in the $\bar{D}^0K^+K^-$ rest frame, respectively. The variable x is defined as $2 \times (m_{K^+K^-} - 2m_K) / \Delta - 1$, where Δ is the width of the $m_{K^+K^-}$ mass window so that x is in the range $[-1, 1]$. The parameters a and b are free to vary in the fit. The fit describes the data well ($\chi^2 / \text{ndf} = 61/82$). The yields determined by the fit are 427 ± 30 for the $\phi \to K^+K^-$ decay and 1152 ± 41 for the background.

Figure 3 displays the sPlot-projected invariant-mass distribution of $\bar{D}^0K^+K^-$, $m_{\bar{D}^0K^+K^-}$, of $B^0_s \to \bar{D}^{(*)0}\phi$ candidates. The $m_{K^+K^-}$ invariant mass is used as the discriminating variable and it is only weakly correlated with the $m_{\bar{D}^0K^+K^-}$ invariant mass (less than 6%). A $B^0_s \to \bar{D}^0\phi$ signal peak is visible at the B^0_s mass, while there is a statistically insignificant excess of $B^0 \to \bar{D}^0\phi$ candidates at the B^0 mass. In the region below $m_{\bar{D}^0} = m_{\phi}$ (up to resolution effects), a wider structure is visible and can be attributed to the vector-vector decay $B^0 \to \bar{D}^0\pi \to \bar{D}^0\pi^0 / \bar{D}^0\gamma \phi$.

An extended unbinned maximum-likelihood fit is performed to determine the number of B^0 and B^0_s decaying into the $\bar{D}^0\phi$ final state and that of the mode $B^0_s \to \bar{D}^{(*)0}\phi$ together with the value of the longitudinal polarization fraction f_L. The $B^0_s \to \bar{D}^{(*)0}\phi$ mode is modeled by a Gaussian function, for which the mean value and resolution are free parameters. The B^0 signal is modeled by a Gaussian function with the same resolution as the B^0_s mode and a mean constrained with respect to that of the B^0_s signal using the known $m_{\bar{D}^0} - m_{\phi}$ mass difference [18]. The $B^0 \to \bar{D}^{(*)0}\phi$ signal is modeled by nonparametric PDFs, built from large simulated samples, using a kernel estimation technique [39]. Its shape, as a function of the invariant-mass distribution, strongly depends on the polarization of the decay amplitude. Two extreme polarization configurations are considered: fully longitudinal ($f_L = 1$) or transverse ($f_L = 0$). A global PDF for each polarization ($P_{\text{long/short}}$) is obtained as the average of the PDF of the two decays $\bar{D}^0 \to \bar{D}^{(*)0}\phi$ weighted according to their relative branching fraction [18]. The total PDF for the $\bar{D}^0\phi$ signal is then modeled as the sum $f_L \times P_{\text{long}} + (1 - f_L) \times P_{\text{short}}$.

The residual background is accounted for with a first-order polynomial function. The yields obtained from this fit are $N_{B^0 \to \bar{D}^0\phi} = 132 \pm 13$, $N_{B^0_s \to \bar{D}^0\phi} = 26 \pm 11$, and $N_{B^0 \to D^{(*)0}\phi} = 163 \pm 19$, with $f_L = (73 \pm 15)\%$.

The branching fractions of $B^0 \to \bar{D}^{(*)0}\phi$ are measured as

$$
\frac{\mathcal{B}(B^0 \to \bar{D}^{(*)0}\phi)}{\mathcal{B}(B^0 \to \bar{D}^0\pi^+\pi^-)} = \frac{N_{B^0 \to D^{(*)0}\phi} \times c(B^0 \to \bar{D}^0\pi^+\pi^-)}{N_{B^0 \to \bar{D}^{(*)0}\phi} \times c(B^0 \to \bar{D}^{(*)0}\phi)} \times \mathcal{F},
$$

where \mathcal{F} is 1 for B^0 decays and f_L / f_s for B^0_s decays. In this ratio, the ratio between the signal and normalization modes is required. The efficiency and the number of selected signals for the normalization mode are: $c(B^0 \to \bar{D}^0\pi^+\pi^-) = (10.6 \pm 0.3) \times 10^{-4}$ and $N_{B^0 \to \bar{D}^0\pi^+\pi^-} = 29,940 \pm 240$ (see Ref. [32] for details). The efficiency includes various...
effects related to reconstruction, triggering and selection of the signal events. Efficiencies are determined from simulation with data-driven corrections applied. The efficiencies of the modes $B^0 \rightarrow D^{\phi} \phi$ and $B^0 \rightarrow D^{0} \phi$ are statistically consistent and are equal to $e(B^0(s) \rightarrow D^{\phi} \phi) = (11.1 \pm 0.3) \times 10^{-4}$. For the $B^0 \rightarrow D^{0} \phi$ decay, the efficiency is obtained as the average of the four following sets of simulated events: fully transverse/longitudinal decays with the decays $\bar{D}^0 \rightarrow D^{\phi} \phi / D^{\phi} \gamma$, where the obtained $f_{L} = (73 \pm 15)\%$ and the branching fractions of the \bar{D}^{0} subdecays are used. The efficiency, after data corrections, is found to be $e(B_{s} \rightarrow D^{0} \phi) = (10.8 \pm 0.1) \times 10^{-4}$.

In the fit to the $m_{K^{+}K^{-}}$ distribution, the background is modeled by a single set of parameters a and b. However, the background receives contributions from broad $K^{+}K^{-}S$-wave amplitudes, which could be different for the various $B^0(s) \rightarrow D^{\phi} \phi$ modes. Since a full amplitude analysis is beyond the scope of this measurement, the following study is performed: the candidates shown in Fig. 2 are divided into three subsamples: $B^0_{s} \rightarrow D^{\phi} \phi$-like candidates with $m_{\rho^{0}K^{+}K^{-}} \in [5000,5240] \cup [5310,5400]$ MeV/c2, $B^0 \rightarrow D^{\phi} \phi$-like candidates with $m_{\rho^{0}K^{+}K^{-}} \in [5240, 5310]$ MeV/c2, and combinatorial background candidates with $m_{\rho^{0}K^{+}K^{-}}$ above 5400 MeV/c2. The parameters a and b of the quadratic background function are determined independently for the three subsamples and are found to be consistent with each other. Using the results from the fits to the three subsamples to describe the $K^{+}K^{-}$ background, pseudoexperiments are generated to produce $D^{\phi} \phi$-like $m_{K^{+}K^{-}}$ samples that mimic the data. The signal PDF for the $B^0_{s} \rightarrow D^{\phi} \phi$ decays and the PDFs for various b-hadron decays are taken from the nominal fit to $m_{\rho^{0}K^{+}K^{-}}$ as described in Ref. [32] are considered. The fits to the $m_{K^{+}K^{-}}$ and $m_{\rho^{0}K^{+}K^{-}}$ distributions are then repeated to determine the pull distributions of $N_{B^0_{s} \rightarrow D^{\phi} \phi}$, $N_{B^0 \rightarrow D^{\phi} \phi}$, $N_{\bar{B}^0 \rightarrow D^{0} \phi}$, and f_{L}. The coverage tests perform as expected, except for $N_{\bar{B}^0 \rightarrow D^{0} \phi}$, for which the data uncertainty is overestimated by about 10%. No correction is applied for this overcoverage. While the fit is unbiased when using a single set of parameters to generate the $K^{+}K^{-}$ background, when allowing for different true values of a and b in the different mass regions a bias on the parameter $N_{\bar{B}^0 \rightarrow D^{0} \phi}$ is found and corresponds to an overestimation by 7 candidates. This is corrected for the computation of the branching fraction.

Potential sources of systematic uncertainty on the efficiencies are correlated and largely cancel in the quoted ratios of branching fractions. The main differences are related to the PID selection for the $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs and to the hardware trigger. For each effect, a systematic uncertainty of 2% is computed, mainly from the PID calibration method and differences between the trigger response in data and simulation [32]. The uncertainty on the known value of $B(\phi \rightarrow K^{+}K^{-})$ is 1% [18]. For the B^0 modes, an uncertainty of 5.8% related to the fragmentation factor ratio f_s/f_d [40] is accounted for. The yield of the normalization mode is assigned a systematic uncertainty of 2%, where the main contributions are from the modeling of the signal and partially reconstructed background shapes [32].

Sources of systematic uncertainty on the determination of $N_{B^0(s) \rightarrow D^{\phi} \phi}$ and f_{L} are related to the fit model of the $m_{K^{+}K^{-}}$ distribution and that of the fit to the weighted $D^{0} K^{+} K^{-}$ invariant-mass spectrum. The weights from the fits are calculated and the $B^0(s) \rightarrow D^{\phi} \phi$ yields and f_{L} are fitted with three different configurations: by varying the natural width of the ϕ meson by its uncertainty [18]; by replacing the quadratic part of the $m_{K^{+}K^{-}}$ background PDF with a third-order Chebyshev polynomial; and by replacing the $m_{K^{+}K^{-}}$ background PDF with an empirical function [41], $\{1 - \exp[-(m - m_{0})/s]/C_3\} \times (m/m_{0})^c + d \times (m/m_{0})^4$, where m_{0} is fixed to $2m_{K}$ and the parameters c, d and f are free to vary in the fit. The largest variations from the nominal model are taken as systematic uncertainties. For the fit to the invariant-mass distribution of the $D^{\phi} \phi$ candidates, alternative models for $B^0(s) \rightarrow D^{0} K^{+} K^{-}$ and $B^0 \rightarrow D^{0} \phi$ are considered: one changing the fit model of the $B^0_{s} \rightarrow D^{0} \phi$ decays to that used to model $B^0(s) \rightarrow D^{0} K^{+} K^{-}$, as described in Ref. [32], and others in which the PDFs of the fully transversally/longitudinally polarized $B^0_{s} \rightarrow D^{0} \phi$ decays are varied within the uncertainties on the ratio of branching fractions $B(D^{0} \rightarrow D^{0} \phi \pi^{+})/B(D^{0} \rightarrow D^{0} \gamma)$ [18] and of the efficiencies obtained from simulation. Possible partially reconstructed background from the $B^0_{s} \rightarrow D^{0} \phi \pi^{+}$ and $B^0 \rightarrow D^{0} \phi \pi^{0}$ decays are also considered in the fit model. The resulting uncertainties are summed linearly assuming maximal correlation for this kind of systematic uncertainty and correspond to relative values of 4.7%, 31.1%, 5.4% and 4.9% on $N_{B^0_{s} \rightarrow D^{\phi} \phi}$, $N_{B^0 \rightarrow D^{\phi} \phi}$, $N_{\bar{B}^0 \rightarrow D^{0} \phi}$ and f_{L}, respectively. As the efficiencies depend on the signal decay-time distribution, the effect due to the different lifetimes of the B^0 eigenstates [42] is considered and found to be 0.8%. When considering the ratio between $B(B^0_{s} \rightarrow D^{0} \phi \pi^{+})$ and $B(B^0 \rightarrow D^{0} \phi)$ and the longitudinal polarization fraction f_{L}, this systematic uncertainty is doubled to account for unknown strong phases between decay amplitudes and unknown fractions between different angular momenta. See supplemental material [43] for a summary of the various sources of systematic uncertainties.

The ratio of branching fractions $B(B^0_{s} \rightarrow D^{0} \phi \pi^{+})/B(B^0 \rightarrow D^{0} \phi \pi^{+})$ is measured to be $(3.4 \pm 0.4 \pm 0.3)\%$, where the first uncertainty is statistical and the second systematic, and $B(B^0_{s} \rightarrow D^{0} \phi)$ to be $(3.0 \pm 0.3 \pm 0.2 \pm 0.2) \times 10^{-5}$, where the third uncertainty is related to the branching fraction of the normalization mode [18,44,45]. The branching fraction is compatible with and more precise than the previous LHCb measurement [17].
and supersedes it. The decay $B_s^0 \rightarrow D^{*0} \phi$ is observed for the first time, with a significance of more than seven standard deviations estimated using its statistical uncertainty and systematic variations of $N_{B_s \rightarrow D^{*0} \phi}$. The ratio of branching fractions $B(B_s^0 \rightarrow D^{*0} \phi)/B(B_s^0 \rightarrow D^0 \pi^+ \pi^-)$ is measured to be $(4.2 \pm 0.5 \pm 0.4)\%$ and the branching fraction $B(B_s^0 \rightarrow D^{*0} \phi)$ is $(3.7 \pm 0.5 \pm 0.3 \pm 0.2) \times 10^{-3}$. The fraction of longitudinal polarization is measured to be $f_L = (73 \pm 15 \pm 4)\%$, which is comparable with measurements from similar color-suppressed B^0 decays [19,20]. The ratio of branching fractions $B(B_s^0 \rightarrow D^{0} \phi)/B(B_s^0 \rightarrow D^0 \phi)$ is $1.23 \pm 0.20 \pm 0.08$.

The ratio of branching fractions of $B(B^0 \rightarrow D^{0} \phi)/B(B^0 \rightarrow D^0 \phi)$ is measured to be $(1.2 \pm 0.7 \pm 0.4) \times 10^{-3}$ and the branching fraction $B(B^0 \rightarrow D^0 \phi)$ to be $(1.1 \pm 0.6 \pm 0.3 \pm 0.1) \times 10^{-6}$. The significance for the W-exchange OZI-suppressed decay $B^0 \rightarrow D^0 \phi$ is about two standard deviations. Since there is no significant signal, an upper limit is set as $B(B^0 \rightarrow D^0 \phi) < 2.0 (2.3) \times 10^{-6}$ at 90% (95%) C.L., representing a factor of six improvement over the previous limit by the BABAR collaboration [27].

The upper limit obtained here is compatible with the updated theoretical prediction $B(B^0 \rightarrow D^0 \phi) = (1.6 \pm 0.1) \times 10^{-6}$. These results are used to constrain the $\omega - \phi$ mixing angle assuming the dominant contribution to the $B^0 \rightarrow D^0 \phi$ decay is through $\omega - \phi$ mixing. The study in Ref. [28] predicts a mixing angle between 0.45° (at the ω mass) and 4.65° (at the ϕ mass). Using the upper limit in this paper, the constraint $|\delta| < 5.2° (5.5°)$ is set at 90% (95%) C.L. Further studies with more data are therefore motivated.

\[B^0 \rightarrow D^\ast^0 \phi \]

[16] R. Aaij et al. (LHCb Collaboration), Measurement of CP observables in $B^\pm \rightarrow D^{(*)}\phi^\pm$ and $B^\pm \rightarrow D^{(*)}\pi^\pm$ decays, Phys. Lett. B 777, 16 (2018).

[27] B. Aubert et al. (BABAR Collaboration), Search for $B^0 \rightarrow \phi(K^+\pi^-)$ decays with large $K^+\pi^-$ invariant mass, Phys. Rev. D 76, 051103 (2007).

OBSERVATION OF $B_s^0 \rightarrow D^{(*)0} \phi$ AND ...

PHYS. REV. D 98, 071103 (2018)
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil [associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]

University of Chinese Academy of Sciences, Beijing, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

School of Physics and Technology, Wuhan University, Wuhan, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia (associated with LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France)

Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)

Van Swinderen Institute, University of Groningen, Groningen, Netherlands (associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

National Research Centre Kurchatov Institute, Moscow, Russia [associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia]

National University of Science and Technology "MISIS", Moscow, Russia [associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia]

National Research Tomsk Polytechnic University, Tomsk, Russia [associated with Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia]

Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain (associated with ICCUB, Universitat de Barcelona, Barcelona, Spain)

University of Michigan, Ann Arbor, Michigan, USA (associated with Syracuse University, Syracuse, New York, USA)

Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, USA (associated with Syracuse University, Syracuse, New York, USA)

Also at Università di Ferrara, Ferrara, Italy.

Also at Laboratoire Leprince-Ringuet, Palaiseau, France.

Also at Università di Milano Bicocca, Milano, Italy.

Also at Università di Modena e Reggio Emilia, Modena, Italy.

Also at Novosibirsk State University, Novosibirsk, Russia.

Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Also at Università di Bologna, Bologna, Italy.

Also at Università di Genova, Genova, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Università di Bari, Bari, Italy.

Also at Sezione INFN di Trieste, Trieste, Italy.

Also at Università degli Studi di Milano, Milano, Italy.

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at Agh - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at Università di Padova, Padova, Italy.

Also at Università di Cagliari, Cagliari, Italy.

Also at MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.

Also at Escuela Agrícola Panamericana, San Antonio de Oriente, Honduras.

Also at Scuola Normale Superiore, Pisa, Italy.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

Also at National Research University Higher School of Economics, Moscow, Russia.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Roma La Sapienza, Roma, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.

Also at School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China.