Electroweak Penguin
Decays at LHCb
T. Blake for the LHCb collaboration

ICHEP 2018, Seoul
Outline

- Branching fraction and angular distribution of $b \rightarrow s \mu^+ \mu^-$ processes:
 - Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (based on 3 fb$^{-1}$).
 - Angular analysis of $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ (based on 5 fb$^{-1}$)
- Branching fraction of $b \rightarrow d \mu^+ \mu^-$ processes:
 - Evidence for $B_s \rightarrow \overline{K}^{*0} \mu^+ \mu^-$ (based on 4.6 fb$^{-1}$)

More information can be found at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/Summary_RD.html
Electroweak penguin decays

- Flavour changing neutral current transitions that only occur at loop order (and beyond) in the SM.

- New particles can also contribute:

 enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles.

SM diagrams involve the charged current interaction.
Expected $d\Gamma/dq^2$ spectrum

Photon pole enhancement (no pole for $B \rightarrow P \ell \ell$ decays)

Spectrum dominated by narrow charmonium resonances. (vetoed in data)

Form-factors from LCSR calculations

Form-factors from Lattice QCD

Long distance contributions from $c\bar{c}$ above open charm threshold

Typically removed in analyses

Parameterisation

$4\left[m(\mu) \right]^2$ dimuon mass squared
• We already have precise measurements of branching fractions from the Run1 data, with at least comparable precision to SM expectations:

[We have data on the branching fractions for $B^+ \to K^+ \mu^+ \mu^-$ and $B^0 \to K^0 \mu^+ \mu^-$, with measurements at LHCb and CMS.]

• SM predictions have large theoretical uncertainties from hadronic form factors (3 for $B \to K$ and 7 for $B \to K^*$ decays). For details see [Bobeth et al JHEP 01 (2012) 107] [Bouchard et al. PRL111 (2013) 162002] [Altmannshofer & Straub, EPJC (2015) 75 382].
Branching fraction measurements

Measure smaller branching fractions than predicted by the SM
Angular observables

- Multibody final-states:
 - Angular distribution provides many observables that are sensitive to BSM physics.
 - Constraints are orthogonal to branching fraction measurements, both in their impact in global fits and in terms of experimental uncertainties.

eg $B \rightarrow K^{*0} \mu^+ \mu^-$ decay described by three angles and q^2.

(a) θ_K and θ_ℓ definitions for the B^0 decay

(b) ϕ definition for the B^0 decay

(c) ϕ definition for the \bar{B}^0 decay
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular distribution

Complex angular distribution:

$$\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\Omega} \bigg|_p = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_l \right.$$

$$- F_L \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi$$

$$+ S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi$$

$$+ \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi$$

$$+ S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \right]$$

fraction of longitudinal polarisation of the K^*

forward-backward asymmetry of the dilepton system

The observables depend on form-factors for the $B \rightarrow K^*$ transition plus the underlying short distance physics (Wilson coefficients).

Experiments can reduce the complexity by folding the angular distribution, see [LHCb, PRL 111 (2013) 191801]
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular observables

Form-factor “free” observables

- In QCD factorisation/SCET there are only two form-factors:
 - One is associated with A_0 and the other A_{\parallel} and A_{\perp}.
- Can then construct ratios of observables which are independent of these soft form-factors at leading order, e.g.
 \[P'_5 = S_5 / \sqrt{F_L (1 - F_L)} \]

- P'_5 is one of a set of so-called form-factor free observables that can be measured [Descotes-Genon et al. JHEP 1204 (2012) 104].
Effective theory

- Can write a Hamiltonian for an effective theory of $b \rightarrow s$ processes:

\[\mathcal{H}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_i C_i(\mu) \mathcal{O}_i(\mu), \]

\[\Delta \mathcal{H}_{\text{eff}} = \frac{\kappa_{\text{NP}}}{\Lambda_{\text{NP}}^2} \mathcal{O}_{\text{NP}} \]

k_{NP} can have all/some/none of the suppression of the SM, e.g. MFV inherits SM CKM suppression.

$c.f.\text{ Fermi theory of weak interaction where at low energies:}$

\[\lim_{q^2 \rightarrow 0} \left(\frac{g^2}{m_W^2 - q^2} \right) = \frac{g^2}{m_W^2} \]

i.e. the full theory can be replaced by a 4-fermion operator and a coupling constant, G_F.

Local 4 fermion operators with different Lorentz structures

Wilson coefficient (integrating out scales above μ)

NP scale

NP can modify SM contribution or introduce new operators

c.f. Fermi theory of weak interaction where at low energies:
Global fits

- Several attempts to interpret our results through global fits to $b \to s$ data.

Data are consistent between experiments/measurements and favour a modified vector coupling ($C_9^{NP} \neq 0$) at 4-5σ.

[W. Altmannshofer et al. EPJC 77 (2017) 377]
$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ decay

- First observed by the CDF collaboration in [PRL 107 (2011) 201802]
- Decay has unique phenomenology:
 - Diquark pair as a spectator rather than single quark;
 - Λ_b can be produced polarised in pp collisions;
 - and the Λ baryon decays via the weak interaction.
- Based on [JHEP 06 (2015) 115], expect signal predominantly at low hadronic-recoil ($15 < q^2 < 20$ GeV2/c4).

Figure and SM prediction from: [Detmold et al. Phys.Rev. D93 (2016) 074501]

Data from: [LHCb, JHEP 06 (2015) 115]
$\Lambda_b \to \Lambda \mu^+ \mu^-$ angular distribution

• If the Λ_b is produced polarised the decay is described by 5 angles and normal-vector, \hat{n}.

• Large number of observables:

$$\frac{d^5 \Gamma}{d\Omega} = \frac{3}{32\pi^2} \sum_{i}^{34} K_i(q^2) f_i(\Omega)$$

where $K_{11} - K_{34}$ are zero if the Λ_b is unpolarised. [Blake et al. JHEP 11 (2017) 138]

• Determine observables using the method of moments and a set of orthogonal weighing functions.

• Correct for angular efficiency using per-candidate weights determined on simulated phasespace events.

• Analysis cross-checked using $B^0 \to J/\psi K_S$ and $\Lambda_b \to J/\psi \Lambda$ decays selected in same way as the signal.
$\Lambda_b \to \Lambda \mu^+ \mu^-$ angular distribution

• Large asymmetries on both the lepton- and hadron-side:

\[
A_{FB}^{\ell} = -0.39 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst)}
\]
\[
A_{FB}^{h} = -0.30 \pm 0.05 \text{ (stat)} \pm 0.02 \text{ (syst)}
\]
\[
A_{FB}^{\ell h} = +0.25 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst)}
\]

• Hadron-side asymmetry due to the weak decay of the Λ baryon.

Consistent with SM predictions

[PRD 93 (2016) 074501] ($A_{FB}^{\ell h}$ is $\sim 2\sigma$ from its prediction)
$b \rightarrow d \mu^+ \mu^-$ transitions

- Decays are strongly suppressed in the SM, due to the small size of V_{td}, with branching fractions of $\mathcal{O}(10^{-8})$.
- We already have access to $b \rightarrow d \mu^+ \mu^-$ processes in the Run 1 data set:

\[
\frac{\mathcal{B}(B^+ \rightarrow \pi^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)} \Rightarrow |V_{td}/V_{ts}| = 0.20 \pm 0.02
\]

[Du et al. PRD 93 (2016)034005]
$B_s \rightarrow \bar{K}^{*0} \mu^+ \mu^-$

- Could be used in conjunction with $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ to determine $|V_{td}/V_{ts}|$.
- Need good mass resolution to separate the Bs and $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays.
- Perform a search for the decay using a data set corresponding to 4.6fb$^{-1}$ (3fb$^{-1}$ + 1.6fb$^{-1}$).
\(B_s \rightarrow \bar{K}^*0 \mu^+ \mu^- \) branching fraction

- Analysis binned in 4 bins of NN response.
- Signal yield determined from a simultaneous fit to the NN response bins.
- Normalise signal using \(B^0 \rightarrow J/\psi K^*0 \) and \(f_s/f_d \) from [LHCb-CONF-2013-011].
- Find first evidence for the decay with a significance of 3.4\(\sigma \).
- Resulting branching is:

\[
\mathcal{B}(B_s \rightarrow \bar{K}^*0 \mu^+ \mu^-) = [2.9 \pm 1.0 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.3 \text{ (norm)}] \times 10^{-8}
\]

- Consistent with SM predictions, see e.g. [EPJC 73 (2013) 2593, arXiv:1803.05876]
• Analysis binned in 4 bins of NN response.

• Signal yield determined from a simultaneous fit to the NN response bins.

• Normalise signal using $B^0 \rightarrow J/\psi K^{*0}$ and f_s/f_d from [LHCb-CONF-2013-011]

• Find first evidence for the decay with a significance of 3.4σ.

• Resulting branching is:

$$\mathcal{B}(B_s \rightarrow \bar{K}^{*0}\mu^+\mu^-) = [2.9 \pm 1.0 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.3 \text{ (norm)}] \times 10^{-8}$$

⇒ Consistent with SM predictions, see e.g. [EPJC 73 (2013) 2593, arXiv:1803.05876]
Summary

• FCNC processes provide powerful constraints on extensions of the SM.
• Large $b\bar{b}$ cross-section at the LHC provides large samples of “rare” decay processes.
• Several interesting tensions are seen in data on $b\rightarrow s\ell^+\ell^-$ processes.
Summary

• Huge progress expected in the next five years with new data from the LHC experiments and from Belle II.
$B_s \rightarrow \bar{K}^{*0} \mu^+ \mu^-$
$B_s \rightarrow J/\psi \bar{K}^{*0}$

![Graphs showing the decay of B_s to $J/\psi \bar{K}^{*0}$](image)

T. Blake
Operators

- Different processes are sensitive to different 4-fermion operators. Can exploit this to over-constrain the system.

\[O_7 = \left(\frac{m_b}{e} \right) (\bar{s}\sigma^{\mu\nu} P_R b F_{\mu\nu}) \]

- photon (constrained by radiative decays and \(b \to s\ell^+\ell^- \) processes at small \(q^2 \))

\[O_9 = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^{\mu}\ell) \]

- vector current (constrained by \(b \to s\ell^+\ell^- \) processes)

\[O_{10} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^{\mu}\gamma_5\ell) \]

- axial vector current (constrained by leptonic decays and \(b \to s\ell^+\ell^- \) processes)

\[O_S = (\bar{s}P_R b)(\bar{\ell}\ell) \]

- scalar and pseudoscalar operators (constrained primarily by leptonic decays)

\[O_P = (\bar{s}P_R b)(\bar{\ell}\gamma_5\ell) \]

- e.g.

\[B_s^0 \to \mu^+\mu^- \text{ constrains } C_{10} - C'_{10}, \; C_S - C'_{S}, \; C_P - C'_{P} \]

\[B^+ \to K^+\mu^+\mu^- \text{ constrains } C_9 + C'_9, \; C_{10} + C'_{10} \]

\[B^0 \to K^{*0}\mu^+\mu^- \text{ constrains } C_7 \pm C'_7, \; C_9 \pm C'_9, \; C_{10} \pm C'_{10} \]

The primes denote right-handed counterparts of the operators whose contribution is small in the SM.
Interpretation of global fits

Optimist’s view point

Vector-like contribution could come from e.g. new tree level contribution from a Z' with a mass of a few TeV.

Pessimist’s view point

Vector-like contribution could point to a problem with our understanding of QCD, e.g. are we correctly estimating the contribution for charm loops that produce dimuon pairs via a virtual photon?

More work needed from experiment/theory to disentangle the two
What can we learn from the data?

- If we are underestimating $c\bar{c}$ contributions then naively expect to see the shift in C_9 get larger closer to the narrow charmonium resonances.

No clear evidence for a rise in the data (but more data is needed).
SM contributions

- Interested in new short distance contributions.
- We also get long-distance hadronic contributions.
- Need estimate of non-local hadronic matrix elements [Khodjamirian et al. JHEP 09 (2010) 089]

Short distance part integrates out (as a Wilson coefficient)
Theoretical Framework

• In leptonic decays the matrix element for the decay can be factorised into a leptonic current and B meson decay constant:

$$\langle \ell^+ \ell^- | j_\ell j_q | B_q \rangle = \langle \ell^+ \ell^- | j_\ell | 0 \rangle \langle 0 | j_q | B_q \rangle$$

$$\approx \langle \ell^+ \ell^- | j_q | 0 \rangle \cdot f_{B_q}$$

• In semileptonic decays, the matrix element can be factorised into a leptonic current times a form-factor:

$$\langle \ell^+ \ell^- M | j_\ell j_q | B \rangle = \langle \ell^+ \ell^- | j_\ell | 0 \rangle \langle M | j_q | B_q \rangle$$

$$\approx \langle \ell^+ \ell^- | j_\ell | 0 \rangle \cdot F(q^2) + O(\Lambda_{QCD}/m_B)$$

however this factorisation is not exact (due to hadronic contributions).
Can select a clean sample of signal events using multivariate classifier.

2398 ± 57 candidates in $0.1 < q^2 < 19$ GeV2 after removing the J/ψ and $\psi(2S)$.

$B^0 \rightarrow J/\psi K^{*0}$

combinatorial background
Systematic uncertainty on branching fraction measurements

- Normalise measurements to $B \to J/\psi X$ control channel.
 - Cancels luminosity/cross-section/efficiency scale uncertainties.
- Use $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb as an example of what systematic uncertainties are important:

 | Source | $F_S|_{644}^{1200}$ | $d\mathcal{B}/dq^2 \times 10^{-7} (e^4/\text{GeV}^2)$ |
 |-----------------------------|---------------------|--|
 | Data-simulation differences | 0.008–0.013 | 0.004–0.021 |
 | Efficiency model | 0.001–0.010 | 0.001–0.012 |
 | S-wave $m_{K\pi}$ model | 0.001–0.017 | 0.001–0.015 |
 | $B^0 \to K^{*(892)^0}$ form factors | – | 0.003–0.017 |
 | $\mathcal{B}(B^0 \to J/\psi (\to \mu^+ \mu^-)K^{*0})$ | – | 0.025–0.079 |

Uncertainty on $\mathcal{B}(B \to J/\psi X)$ normalisation modes is already a limiting factor. Encourage Belle II to update these measurements!
Resonant contributions

- With the large LHC datasets can also explore the shape of the $d\Gamma/dq^2$ spectrum in detail.
- See evidence for broad charmonium states and light quark contributions.
- Can determine relative magnitude/phases of the different contributions.

- Data could be used to exclude models proposing new GeV-scale particles as an explanation for R_K/R_{K^*}. [F. Sala & D. Straub, arXiv:1704.06188]
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular observables

- SM predictions based on
 [Altmannshofer & Straub, EPJC 75 (2015) 382]
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

• Typically integrate over all but one angle or perform angular folding to reduce the number of observables.

• LHCb has performed the first full angular analysis of the decay.

→ Access the full set of angular observables and their correlations.

• Experiments need good control of detector efficiencies and to understand background from decays where the $K\pi$ is in an S-wave configuration.

• Use $B^0 \rightarrow J/\psi K^{*0}$ as a control channel to understand the acceptance of the detector.
$B^0 \rightarrow K^{*0} \mu^+ \mu^-$ example fit

\[m(K^+\pi^-\mu^+\mu^-) \ [\text{MeV}/c^2] \]

\[\cos \theta_K \]

\[\cos \theta_l \]
Angular distribution of $B^+ \rightarrow K^+ \ell^+ \ell^-$ is a null test of SM, but can be sensitive to new scalar/pseudoscalar/tensor contributions, e.g. [F. Beaujean et al. EPJC 75 (2015) 456]

Combination $B(B_s \rightarrow \mu^+ \mu^-)$ $F_H[B^+ \rightarrow K^+ \mu^+ \mu^-]$
$B_s \rightarrow \phi \mu^+ \mu^- \text{ decay rate}$

- Large tension between the SM prediction and the data at low $q^2 (\sim 3\sigma)$.

SM predictions based on
[Altmannshofer & Straub, arXiv:1411.3161]
Rare leptonic decays

- $B_{(s,d)} \rightarrow \mu^+ \mu^-$ are golden modes to study at the LHC.
 - CKM suppressed, loop suppressed and helicity suppressed.
 - Powerful probe of models with new enhanced (pseudo)scalar interactions, e.g. SUSY at high $\tan \beta$.

\[
\frac{\mathcal{B}(B_q \rightarrow \ell^+ \ell^-)_{\text{NP}}}{\mathcal{B}(B_q \rightarrow \ell^+ \ell^-)_{\text{SM}}} = \frac{1}{|C_{10}^{\text{SM}}|^2} \left\{ \left(1 - 4 \frac{m_\ell^2}{m_{B_q}} \right) \left| \frac{m_{B_q}}{2m_\ell} (C_S - C_S') \right|^2 \right. \\
\left. + \left| \frac{m_{B_q}}{2m_\ell} (C_P - C_P') + (C_{10} - C_{10}') \right|^2 \right\}
\]
Recent LHCb analysis using run 1 and 2 data (3fb$^{-1}$ + 1.4fb$^{-1}$) provided the first single experiment observation of $B_s \rightarrow \mu^+ \mu^-$ at more than 7σ. [LHCb, PRL 118 (2017) 191801]
$B_S \rightarrow \mu^+ \mu^-$

- Recent LHCb analysis using run 1 and 2 data (3fb$^{-1}$ + 1.4fb$^{-1}$) provided the first single experiment observation of $B_S \rightarrow \mu^+ \mu^-$ at more than 7σ.
 [LHCb, PRL 118 (2017) 191801]

- Measurements are all consistent with the SM expectation.
 - Can exclude large scalar contributions.

- Branching fraction predicted precisely in the SM with a ~6% uncertainty.

-Time integrated SM prediction
 [C. Bobeth et al. PRL112 (2014)101801]

- Branching fraction Γ_B / Γ_s from Lattice QCD

- f_{B_s} decay constant from Lattice QCD

- CKM elements

- v_{cb}
 - 3.6%
 - 0.11%
 - 0.33%
 - 0.49%

- m_s
 - 1.5%

- $\Delta l / \Gamma_s$
 - 0.5%

- γ
 - 3.2%
Effective lifetime

- The untagged time dependent decay rate is
 \[
 \Gamma[B_s(t) \to \mu^+ \mu^-] + \Gamma[\bar{B}_s(t) \to \mu^+ \mu^-] \propto e^{-t/\tau_{B_s}} \left\{ \cosh \left(\frac{\Delta \Gamma_s}{2} t \right) + A_{\Delta \Gamma} \sinh \left(\frac{\Delta \Gamma_s}{2} t \right) \right\}
 \]

- \(A_{\Delta \Gamma} \) provides additional separation between scalar and pseudoscalar contributions.

- In the SM \(A_{\Delta \Gamma} = 1 \) such that the system evolves with the lifetime of the heavy \(B_s \) mass eigenstate.
The $A_{\Delta \Gamma}$ parameter modifies the effective lifetime of the decay:

$$\tau_{\text{eff}} = \frac{\tau_{B_s}}{1 - y_s^2} \left(\frac{1 + 2A_{\Delta \Gamma} y_s + y_s^2}{1 + A_{\Delta \Gamma} y_s} \right)$$

where $y_s = \tau_{B_s} \frac{\Delta \Gamma}{2}$

- LHCb have performed a first measurement of τ_{eff}, giving

$$\tau[B_s^0 \to \mu^+ \mu^-] = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$$

NB Not yet sensitive to $A_{\Delta \Gamma}$ (the stat. uncertainty is larger than the change in the lifetime from $\Delta \Gamma_s$). This will become more interesting during runs 3 and 4.
$B_{(s,d)} \rightarrow \tau^+ \tau^-$

- LHCb performs a search for $B_{(s,d)} \rightarrow \tau^+ \tau^-$ decays using $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$.
 - Exploit the $\tau^- \rightarrow a_1(1260)\nu_\tau$ and $a_1(1260)^- \rightarrow \rho(770)^0 \pi^-$ decays to select signal/control regions of dipion mass.
- Fit Neural network response to discriminate signal from background.
 - Ditau mass is not a good discriminator due to missing neutrino energy.
- LHCb sets limits on:
 \[
 \mathcal{B}(B_s^0 \rightarrow \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ (95\% CL)} \\
 \mathcal{B}(B^0 \rightarrow \tau^+ \tau^-) < 2.1 \times 10^{-3} \text{ (95\% CL)}
 \]