Dark matter search with top quarks

Sabine Crépé-Renaudin
Laboratoire de Physique Subatomique et de Cosmologie, Grenoble France
 Disclaimer

 ➔ Chose not to be exhaustive but more to show the strategy for the DM searches

 ➔ Very rich search field
 • will only show 13 TeV analysis results with at least 2015+2016 statistics
 • Not enough time to describes in detail the analysis strategies
Dark matter: observations

Evidence of dark matter

- From astrophysics and cosmology observations at **different scales**

 Galaxy rotation

 Galaxy clusters via X-rays and gravitational lensing, collisions

 Nucleosynthesis

 Cosmic microwave background

 Large scale structure formation

 ➔ **Results consistent: need of a new kind of matter**
Dark matter: what do we know about?

Properties

• It makes up 85% of the matter in the Universe
 • It is massive

• It interacts weakly with ordinary matter (at least through gravitation)
 • It is neutral

• It interacts weakly with itself

• It is stable (a minima very long-lived, order of the age of the universe)
 • \(\Rightarrow\) Ruled out SM Z and Higgs
 • Need a symmetry to prevent it to decay ex T-parity

• It is “cold” ie non relativistic
 • \(\Rightarrow\) ruled out SM neutrinos (also not enough massive)
Dark matter: which candidates ? Associated theories ?

Candidates
- WIMPs = Weakly Interacting Massive Particles
 - WIMP “miracle”: weak cross-section + particle mass ~1 TeV ~ relic density
 - Susy neutralinos
 - Kaluza-Klein photon
- Very Weak Interacting Massive Particles
 - gravitinos
 - Axions: to solve the strong CP problem, unstable but long lived
 - Sterile neutrinos: to explain neutrino masses
 - Kaluza Klein gravitons
 - …
- Could be also a more complex sector with several particles and interactions

Theories
- Supersymmetry
 - Symmetry: R-parity
- Extra dimensions
 - Symmetry: KK parity
- Little Higgs
 - Symmetry: T-parity
 - QCD axions
 - …
Dark matter: how to detect it?

Indirect detection
- Search for charged cosmic rays, gamma rays or neutrinos

Collider search
- Produce DM particles from SM particles collisions

Direct detection
- Use scattering of DM on a nucleus

© NASA / Sonoma State University, Aurore Simonnet
Dark matter search at LHC

Search for particles from (UV) complete theories

→ simulate particles decays, dark matter reconstructed as missing E_T
 • Supersymmetry
 • Extra dimensions
 • Little Higgs

Use of effective Field theory

→ more general search, many theories show common low energy behaviour

$q \rightarrow \chi$ mediator M

\[
\frac{g^2}{q^2 + M^2} \rightarrow \chi
\]

If $M \gg q$

\[
\frac{g^2}{M^2} = G_{\text{eff}}
\]

→ describe new interactions with few operators
Dark matter search at LHC: effective theory

Use of effective Field theory

- Mono X search: use of a radiated particle to trigger the event

\[
\begin{align*}
q & \xrightarrow{X} \chi \\
q & \xrightarrow{\chi} X
\end{align*}
\]

\(X = \gamma, \text{jet}, \ldots\)

\(\chi \chi = \text{MET}\)

\(\Rightarrow\) LHC Run-1 focus

- Advantages:
 - model independent
 - Allow to translate LHC results into (in)direct search frames (with some care on the hypothesis)

- Limitations:
 - EFT valid only if \(M \gg q\) \(\Rightarrow\) Run 1 LHC limits \(M \sim 1\) TeV \(\Rightarrow\) should not use energy > 1 TeV
 - Loose correlations that can be used in complete theory
Dark matter search at LHC: simplified models

Simplified models
- In between EFT and complete theory: add a single DM candidate (Dirac fermion) and a mediator

 - Allow to relax the q^2 limit but more model dependent
 - Allow to use other signatures to probe mediator and thus constrains the model

Common model and scenarios
- ATLAS/CMS + theory Dark Matter forum defined the DMSimp model (arXiv:1507.00966)
- Recommendations for benchmark scenarios (arXiv:1703.05703)
- Madgraph implementation (LO/NLO)
Complementarity

Combination of mono-jet, mono-photon and di-jets

- Note: couplings dependence is important

\[g_{DM} = 1, \ g_q = 0.25, \ g_l = 0 \]

\[g_{DM} = 1, \ g_q = 0.1, \ g_l = 0.1 \]
Complementarity

Combination of mono-jet, mono-photon and di-jets

- Sensitivity depends also on the mediator coupling type

Vector mediator

Axial-vector mediator

CMS Preliminary

LHCP 2017

CMS Preliminary

LHCP 2017
Comparison with direct detection

ATLAS

Vector mediator $g_q=0.25$, $g_i=0$

Vector mediator, Dirac DM $g_q=0.25$, $g_i=0$, $U_{pm}=1$

CMS Preliminary

CMS observed exclusion 95% CL

CMS

Vector mediator $g_q=0.25$, $g_i=0$

Axial-vector mediator $g_q=0.25$, $g_i=0$

CMS Preliminary

CMS observed exclusion 95% CL

Top LHC France 2018 Workshop Sabine Crépé-Renaudin

ATLAS Preliminary July 2017

DM Simplified Model Exclusions

Dijet

E_{T}^{miss}+X

Dirac DM $g_q=0.25$, $g_i=0$, $U_{pm}=1$

ATLAS limits at 95% CL, direct detection limits at 95% CL

E_{T}^{miss}+X

CMS observed exclusion 95% CL

OMNIT

PandaX

LUX
Collider Search: where does top quark join in?

Supersymmetry
- Naturalness requires SUSY to have « light » stop (~TeV)
- Stop decays in top + MET, or similarly to top decay unless compressed scenario
- R-parity conservation \Rightarrow stop produced by pair
- Top quarks found also in gluinos decays

Simplified models

Mediator: (axial)vector, (pseudo)scalar

$\bar{t}t + DM$

(pseudo)scalar, 2HDM + (pseudo)scalar

Single top + DM FCNC

FCNC, coloured charged scalar
Supersymmetry: stop search

Top squarks

- Susy = symmetry between fermion and bosons
 - $t_\sim L$ and $t_\sim R$ superpartners of t_L and t_R,
 - mix in 2 mass eigenstates $t_\sim 1$ (the lightest) and $t_\sim 2$
- Significant mass-splitting between the 2 stops is possible due to the large top-quark Yukawa coupling + renormalisation group equations drive third-generation squarks masses to values significantly lower than those of the other generations.

DM particle

- The charginos $\chi^-\pm$ and neutralinos χ^0 are the mass eigenstates formed from the superposition of the charged and neutral SUSY partners of the Higgs and electroweak gauge bosons
 - higgsino, wino and bino
- Neutralino is often considered as the Lightest Supersymmetric Particle (LSP)
Supersymmetry: stop search

Search for stop pairs

- Decays depend on the susy parameters via the particle mass hierarchy, the mixing between t^\pm_L and t^\pm_R and the nature of the neutralino (which mixture of higgsino, wino and bino)

Example of mass spectra considered in the ATLAS 1 lepton analysis

- Analyses divided
 - with respect to final states (0, 1, 2 leptons) as for any top pair analysis
 - and subdivided according to decay chain
Supersymmetry: stop search

Decay chain

- Different diagrams are taken into account to cover the largest possible space in the parameter phase space

Example: considered decay chain in the pure bino LSP hypothesis (from ATLAS 1 lepton analysis)

- Note: in the boundary regions, sensitivity decrease because of the kinematics
Susy Stop pair search: summary

Latest summary plots with references of papers
Gluinos searches

Top quarks appear also in gluinos/b squark decays

- Results obtained with an analysis using final states with two same-sign or three leptons and jets
 [arXiv:1706.03731]
Simplified model: top pair + DM

Fermionic DM particle produced through the exchange of a spin-0 mediator

- colour-neutral scalar ϕ or pseudo-scalar particle a
- Final state top pair + MET

- Not far from susy searches but kinematics different
- More complex models derived from 2HDM could be also considered:
 - Choice of DM forum: 2HDM (type II) + pseudo-scalar \Rightarrow close kinematics, need however to add heavy pseudo-scalar A decays

Couplings

- couplings of the mediator to the SM fermions are constrained by precision flavour measurements
 - Minimal Flavour Violation assumed: same structure as in the Standard Model.
 - Interaction between ϕ/a and SM matter \propto fermion mass via Yukawa coupling \Rightarrow top

Parameters:

- $m(\phi/a)$, $m(\chi)$, g_χ, and the flavour-universal g_q coupling, to reduce parameter number: $g_\chi = g_q = g$
- Minimal width assumed taking into account only couplings and considered particles mass
Simplified model: top pair + DM - CMS

→ CMS 0,1,2 L combination CMS-PAS-EXO-16-049

Limits on coupling

Scalar

Pseudo-scalar
Simplified model: top pair + DM - ATLAS

Vs mediator mass

Vs DM mass

- Comparison (2L) with direct detection spin independent

Direct detection not competitive for pseudo-scalar mediator
Single top + DM

Models

• "Non resonant": FCNC producing a top quark + a vector boson that decays to DM

\[\begin{array}{c}
 \text{g} \\
 \text{u} \\
 \text{V} \\
 \text{t}
\end{array} \]

Couplings:

- \(g_\chi^V \) and \(g_\chi^A \) \(V= \text{vector, } A=\text{axial-vector} \)
- \(g_u^V, g_u^A, g_d^V, g_d^A \), are 3 \(\times \) 3 flavour matrices
 - \(g_u^V - g_u^A = g_d^V - g_d^A \) to preserve SU(2)_L
 - Choice: \(g_u^V = g_d^V \equiv g_q^V \), and \(g_u^A = g_d^A \equiv g_q^A \)

• "Resonant": coloured charged scalar \(\phi \) that decays to a top quark and a DM fermion \(\psi \)

\[\begin{array}{c}
 \text{d} \\
 \phi \\
 \text{t}
\end{array} \]

Couplings:

- \(\phi \) to down-type quarks: \(a_q \) (scalar) and \(b_q \) (pseudo-scalar)
- \(\phi \) to DM \(\psi \): Similarly, \(a_\psi \) and \(b_\psi \)
- Hypothesis: \(a_q = b_q = 0.1 \) and \(a_\psi = b_\psi = 0.2 \).
Single top +DM

Analysis

- CMS, hadronic top decay [arXiv:1801.08427]
- Top-tagging: BDT with substructure variable to distinguish top from light jet (quark/gluon)

Non resonant: vector couplings

Non resonant: axial-vector couplings

- Limits also given for couplings vs m(V)
Simplified model: (axial-)vector mediator

Model:

\[\mathcal{L}_{\text{vector}} = g_q \sum_{q=u,d,s,c,b} Z_q^i \bar{q}^i q + g_{DM} Z_{DM}^i \bar{q}^i q + g_{SM} Z_{SM}^i \bar{q}^i q \]

\[\mathcal{L}_{\text{axial-vector}} = g_q \sum_{q=u,d,s,c,b} Z_q^i \bar{q}^i q + g_{DM} Z_{DM}^i \bar{q}^i q + g_{SM} Z_{SM}^i \bar{q}^i q \]

Scenarios:

- Free parameters: \(m(\chi), m(\text{med}), g_{DM}, g_q, g_l \)
- Minimal width computed according to couplings and considered particles mass
 - mediator decays considered = ones strictly necessary to maintain model self-consistency

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>(g_q)</th>
<th>(g_{DM})</th>
<th>(g_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1: vector model with only couplings to quarks</td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>V2: vector model with small couplings to leptons</td>
<td>0.1</td>
<td>1.0</td>
<td>0.01</td>
</tr>
<tr>
<td>A1: axial-vector model with only couplings to quarks</td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>A2: axial-vector model with equal coupling to quarks & leptons</td>
<td>0.1</td>
<td>1.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Chosen to show the complementarity of the DM production analyses (mono X) and the mediator-to-visible analyses (di X)
Top pair

Analysis

• ATLAS, lepton+jets final state, resolved and boosted regimes \textbf{arXiv:1804.10823}

• Not competitive with dijets limits, because of the BR
 ➔ will be more interesting to look at (pseudo-)scalar mediators
Summary and conclusion

DM search is a very active field

Beyond search using complete model like Susy, strategy evolved from run1 to run 2 from EFT to quite general simplified models

- Allow to show complementarity between collider search and direct detection experiments
- Allow to take advantage of the wide analyses sensitivities at LHC to constrain models using the analyses without DM particle in the final state
- Common benchmark model defined at DM forum help to focus in interested regions

Top quark is an interesting tool in that frame

- Already a lot of results and more to come
C'EST TOUT POUR AUJOUR D'HUI
TO GO FURTHER...
Susy Stop pair search: summary

Other scenarii
Susy CMS summary

Selected CMS SUSY Results* - SMS Interpretation

<table>
<thead>
<tr>
<th>CMS Preliminary</th>
<th>(\sqrt{s} = 13 \text{TeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L = 12.9 \text{ fb}^{-1})</td>
<td>(L = 35.9 \text{ fb}^{-1})</td>
</tr>
</tbody>
</table>

For decays with intermediate mass,\
\[
m_{\text{intermediate}} = x \cdot m_{\text{Mother}} + (1-x) \cdot m_{\text{LSP}}
\]

*Observed limits at 95% C.L. - theory uncertainties not included

Only a selection of available mass limits. Probe "up to" the quoted mass limit for \(m_{\text{LSP}} = 0 \) GeV unless stated otherwise

Top LHC France 2018 Workshop
Sabine Crépé-Renaudin
ATLAS SUSY Searches - 95% CL Lower Limits

December 2017

<table>
<thead>
<tr>
<th>Model</th>
<th>(\ell), (\mu), (\tau)</th>
<th>Jets</th>
<th>(M_{\text{miss}})</th>
<th>Mass Limit</th>
<th>(\sqrt{s} = 7, 8, 13 \text{ TeV})</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{g} \to q\bar{q})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{g} \to q\bar{q} \text{(compressed)})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{b} \to b\tilde{\nu})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{b} \to b\tilde{\nu})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\nu} \to \ell\bar{\nu})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\nu} \to \ell\bar{\nu})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{b} \to b\tilde{\nu} \text{(GMSB NLSNP)})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\nu} \to \ell\bar{\nu} \text{(GMSB NLSNP)})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{b} \to b\tilde{\nu} \text{(GMSB NLSP)})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tilde{\nu} \to \ell\bar{\nu} \text{(GMSB NLSP)})</td>
<td>0 & 0 & 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top LHC France 2018 Workshop

-Sabine Crépé-Renaudin

Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.
Bullet cluster
Bullet cluster

Hot gaz (X-ray)
Bullet cluster

Mass (gravitational lensing)
Bullet cluster