Abstract
We report recent results by the LHCb collaboration in heavy-ion collisions in collider and fixed-target mode at the LHC. A large variety of measurements show the potential of LHCb in nuclear collisions.

Keywords: Heavy-ion collisions, heavy-flavour production, correlation measurements, ultra-peripheral collisions, LHC, collider, fixed-target

1. Introduction
The LHCb experiment is designed for heavy-flavour measurements, precision tests of the standard model and searches for physics beyond the standard model. Its forward rapidity acceptance in $2 < \eta < 5$, its instrumentation with precision tracking and vertex determination, the charged hadron particle identification, the muon system and calorimetry combined with a flexible trigger system featuring a software level trigger with an input rate of about 1 MHz in pp collisions make the experiment a versatile laboratory for studies aiming at a better understanding of strongly interacting matter in the laboratory [1].

The LHCb collaboration is the youngest member of the LHC heavy-ion family participating with a small luminosity in the 2013 pPb run at 5 TeV and in the 2015 PbPb run. Since these pioneering data takings, significantly larger data sets were successfully recorded and are being planned to be taken this year. Table 1 presents already taken and planned collider data and Figure 1 shows the so far available fixed target data. We summarise in the following results that are for the first time presented at a Quark Matter conference edition.

2. Correlation measurements in pp collisions
LHCb proved its capability to perform dihadron correlation measurements of primary charged particles in pPb collisions [2]. While this measurement type is also pursued in pp collisions to probe collectivity [3], LHCb explored for the first time Bose-Einstein correlations of identical pions in pp collisions to constrain the spatio-temporal particle emission patterns as a function of final state particle production multiplicity [4]. The correlation functions are presented in form of a double ratio of $C(Q) = \frac{C(Q_{\text{ME}})}{C(Q_{\text{SM}})} / \frac{C(Q_{\text{ME}})}{C(Q_{\text{SM}})}$ with Q being...
the absolute value of the four-momentum vector difference between the two particles and the indices SE and ME indicating same event and mixed-event distributions. The correlation function is fitted with a function of the form $f(Q) = N \cdot (1 + \lambda \cdot \exp(-QR)) \cdot (1 + \delta Q)$, where λ represent the so-called chaoticity and R the source size. Figure 2 shows the best fit parameters. The resulting source sizes show a similar dependence as observed at midrapidity by other LHC experiments [5, 6, 7] as a function of final state particle multiplicity. More differential studies and studies in pPb collisions are natural extensions of this first result at forward rapidity at the LHC.

3. Heavy-flavour production in pPb collisions in collider mode

The 2013 pPb data set at $\sqrt{s_{NN}} = 5$ TeV allows for precise and unique production studies in the charm sector with LHCb. The observed prompt D^0 nuclear modification factor [8] is shown in Figure 3. A suppression as low as 0.6 at low-p_T at forward rapidity $2 < y^* < 4$ is observed. A slow approach to unity towards...
large transverse momenta of around 10 GeV/c is visible. The data points are contained in the envelope of uncertainties within a model using collinear factorisation and being tuned to reproduce pp collision data and displaying the uncertainties related to nuclear parton distribution functions (nPDF) that are considerably larger than the experimental uncertainties. The forward rapidity data, both integrated and p_T-differential, are reasonably reproduced by a colour glass calculation in the dilute-dense approximation. At backward rapidity, the last bins are indicating values above unity for rapidity differential nuclear modification factors. Both observations, large modifications as well as the significantly smaller uncertainties than those affecting nPDF sets, urge and encourage us to clarify the sources of nuclear modifications in pPb collisions. In particular, a clarification will be necessary to make full use of precision improvements of heavy-flavour observables in nucleus-nucleus collisions to extract parameters for quark matter studies. In addition, the characterisation of the gluonic content of nuclei and nucleons in view of physics of the saturation scale at the highest available collision energy would benefit from a falsification of available models via the combination of the full available set of data.

In pPb collisions at √s_{NN} = 5 TeV, a first measurement of the prompt Λ_c at forward and backward rapidity has been undertaken by LHCb. In Figure 4, the prompt Λ_c/D production ratio shows a behaviour consistent with a model calculation using pp data as input for the parameterisation. The measurement indicates similar values as observed recently by ALICE at midrapidity in pp and in pPb collisions. The large observed values indicate tensions with existing fragmentation fraction measurements in e^+e^- collisions and in ep collisions, see e.g. in [10] for a compilation of LEP data, and warrant further tests of universality in charm hadronisation in pp and pPb collisions. Modifications of baryon-to-meson ratios have been observed in light flavour production in heavy-ion collisions compared to pp collisions, see e.g. in [11].

The observation of modification patterns in the heavy-flavour sector for baryon-to-meson ratios between different collision systems and their investigation as a function of charged-particle multiplicity in the final state may allow us to shed light into the modelling and understanding of these phenomena thanks to the presence of a mass scale much larger than Λ_{QCD} for one of the valence quarks. In pPb collisions, LHCb can contribute to this question at √s_{NN} = 8.16 TeV with an integrated luminosity higher by a factor 20 with respect to the data at 5 TeV presented so far.

In the quarkonium sector, we report precise measurements of prompt and non-prompt J/ψ in pPb collisions at √s_{NN} = 8.16 TeV down to p_T = 0 [14]. In Figure 5, the prompt J/ψ production is compared with calculations using different nPDF sets, the coherent energy loss model as well as colour glass condensate

1The results presented here will appear in [12]. They supersede the preliminary results published in 2017 [13].
analyses in nucleus-nucleus collisions as for example nPDFs as well as to constrain the nature of the partonic interactions in accordance with expectations for nPDF modifications. The non-prompt measurements provide the most precise test of the nuclear modification factor as a function of rapidity integrated over transverse momentum [14] is shown in the right panel. Model references and detailed discussions are given in [14].

4. Heavy-flavour production in fixed-target mode in pAr and pHe collisions

The fixed target data sets of LHCb are a unique chance at the LHC to allow for precise measurements at centre-of-mass energies of around 100 GeV in the backward rapidity hemisphere in the nucleon-nucleon centre-of-mass system. We concentrate at this conference on charm production measurements in proton-induced collisions, that are interesting to constrain nuclear effects not related to deconfinement for upcoming analyses in nucleus-nucleus collisions as for example nPDFs as well as to constrain the nature of the partonic interactions.
5. Towards direct photon measurements in $p\bar{p}$ collisions in collider mode

For suitable kinematics, colour neutral final states can avoid to a large extent possible nuclear modifications that are not related to the partonic content of nuclei. In particular, direct photons are a suitable tool to probe the partonic structure at low-x at forward rapidity at hadron colliders to search for signs of gluon saturation.

LHCb pursues an effort using photons reconstructed in the e^+e^- conversion channel. A target observable is the $R_\gamma = \frac{N_{\text{Data},\gamma}}{N_{\text{Data},\pi^0}} / \frac{N_{\text{MC},\gamma}}{N_{\text{MC},\pi^0}}$ double ratio extracting the direct photons as an excess over the decay photons inside the inclusive sample. The photons from π^0 are found by combining the conversion photons with a photon reconstructed in the calorimeter for a mass fit. For the measurements on isolated photons in $p\bar{p}$, the pp data sets without applying isolation criteria are regarded as control samples. Figure 7 shows the η over π^0 production ratio that enters the definition of the R-ratio. The results in data are very close to the EPOS simulation ones. On the right hand side, the current double ratio R-measurement at 5 TeV using a simulation for 13 TeV pp data is shown as a function of γ-p_T with the present systematic uncertainty on the photon.

There could be conspirative cancellations of the intrinsic charm component and the EMC effect that is hardly constrained for nuclear gluon parton distribution functions by measurements.
reconstruction efficiency, which is dominated by the extrinsic uncertainty of the branching fraction ratio $BR(B \rightarrow \chi_{c1}(\rightarrow J/\psi + \gamma)K^{+}/BR(B \rightarrow J/\psi K^{+})$. This illustration demonstrates the understanding of different pp data samples in terms of different kinematics and final state particle multiplicity at a level of the present systematic uncertainty without an excess being visible in this data set. The measurements of γ-hadron correlations are also carried out as a complementary approach. Both measurements are unique chances to shed light in the low-x frontier of QCD probed at the highest energy hadron collider.

6. Coherent J/ψ production in ultra-peripheral PbPb collisions

Ultra-peripheral collisions in PbPb collisions are an opportunity to probe the nucleus with the quasi-real photon cloud accompanying ultra-relativstic high-charge ions as 82Pb. We report the first measurement of coherent $J/\psi \rightarrow \mu^{+}\mu^{-}$ production by LHCb [20]. Figure 8 demonstrates the capability to separate the coherent from the incoherent production and the continuum. This measurement is sensitive to the gluonic content of the nucleus. On the right hand side, the results are compared with different families of model calculations. With the rapidity range covered by the experimental data points, it is possible to disfavour several model calculations in their present form: a detailed discussion can be found in [20]. Measurements in ultra-peripheral PbPb collisions will strongly profit from the anticipated 10 times larger recorded integrated luminosity in LHCb for the 2018 run compared to the 2015 data set presented here.
7. Summary and Outlook

We have presented new results over a variety of different probes to characterise pp and nuclear collisions at the LHC. First measurements of Bose-Einstein correlations in pp collisions have been presented and show qualitatively similar findings as previous measurements at midrapidities. Results on open heavy-flavour and quarkonium production show strong suppressions at forward rapidity qualitatively compatible with strong shadowing within nPDFs, gluon depletion via saturation within the colour glass condensate framework or coherent energy loss. The LHCb Phase 2 upgrade has been in development and is scheduled to become operational around 2030. The measurements presented here are an important step towards the LHCb Phase 2 upgrade and provide a benchmark for future measurements.

These diverse measurements point to a large potential of LHCb to probe and characterise the initial state of heavy-ion collisions that is instrumental for the understanding of ion-ion collisions and that waits from data parameterisations and pQCD-based models that do not include intrinsic charm at the backward momenta of minimal ionising particle and above. These upcoming detector improvements for LHCb and the anticipated increased luminosities in the future ion-running at the LHC will provide unique opportunities to study these phenomena.

Acknowledgements: The contact author acknowledges support from the European Research Council (ERC) through the project EXPLORINGMATTER, founded by the ERC through a ERC-Consolidator Grant. The contact author thanks his collaborators for two years of excellent work.