Measurement of Higgs boson production in association with top quarks with ATLAS

Rencontres du Vietnam 2018, Quy Nhon

Johnny Raine (Université de Genève)
On behalf of the ATLAS collaboration

8th August, 2018
Introduction

Higgs Yukawa couplings

- All current measurements of the Higgs boson have been consistent with SM
- Fermions couple with the Higgs boson through *Yukawa interactions*
 - Coupling strength proportional to fermion mass
 - Largest coupling is to the top quark
 - Sensitive to the scale of new physics!
- y_t mainly constrained from loop processes

Not model independent, ignores potential BSM contributions
Introduction

$t\bar{t}H$ production

- $t\bar{t}H$: More model independent test of y_t
 - Fourth main Higgs production at LHC
 - Direct measurement of the coupling of Higgs to top quarks

- However, very challenging to measure
 - Small cross section, ~ 0.5 pb at 13 TeV
 - Complex final states
 - Large irreducible backgrounds
 - $t\bar{t} + b\bar{b}$, $\mathcal{O}(2)$ magnitudes larger
 - $t\bar{t} + V$, ~ 1.5 pb

- Huge efforts to observe $t\bar{t}H$ production during LHC Run 1 and 2
Wide range of analyses designed to target the various Higgs boson decays

- Additional considerations to the decay of $t\bar{t}$ pair
- Final states with many objects: jets, b-jets, e, μ, hadronic τ, photons
- Huge thanks to the excellent detector performance magnificent effort of ATLAS performance groups
Four analyses targeting different Higgs decay modes

- Wide range of signal purity and expected yields
- Analysed separately before entering combined analysis

$t\bar{t}H (H \rightarrow b\bar{b})$

- $36.1 \text{ fb}^{-1}, 13 \text{ TeV}$
- $S/B \ 1.8-5.5\%$

$t\bar{t}H$ multilepton

- $36.1 \text{ fb}^{-1}, 13 \text{ TeV}$
- $S/B \ 5-34\%$

$t\bar{t}H$ enriched in $H \rightarrow \gamma\gamma/4\ell$

- $79.8 \text{ fb}^{-1}, 13 \text{ TeV}$
- $S/B \ 5-200\% (\gamma\gamma), 50-500\% (ZZ^* \rightarrow 4\ell)$
Analysis Strategy
\(t\bar{t}H (H \rightarrow b\bar{b}) \)

- Benefit from large \(H \rightarrow b\bar{b} \) BR, selects leptonic top decays
- Large irreducible background from \(t\bar{t} + \text{jets} \), especially \(t\bar{t} + \text{Heavy Flavour} \)
- Large theory uncertainties, biggest source of systematic uncertainty
- Use of MVA techniques in signal regions to enhance signal sensitivity

Categorisation
- Use \(b \)-tagging of jets and object multiplicities
- Dedicated boosted region targets high \(p_T \) top/Higgs

Reconstruction
- Solve object combinatorics to reconstruct final state
- Reco BDT, MEM and Likelihood discriminants

Classification
- BDTs for \(t\bar{t}H \) vs \(t\bar{t} + \text{jets} \)
- Optimised in all SRs
- Reconstruction + event kinematic variables

10 CRs
9 SRs
Analysis Strategy
\(t\bar{t}H (H \rightarrow b\bar{b}) \) Results

- Binned profile likelihood over all regions
- \(t\bar{t} + \geq 1b, \ t\bar{t} + \geq 1c \) normalisation factors kept free floating
- Significance of 1.4\(\sigma \) (1.6\(\sigma \) expected)
- Systematically limited by modelling of \(t\bar{t} + \text{HF} \) background

\[
\Delta \mu = 0.46 \quad \text{and} \quad -0.46
\]

\[
\text{Background-model stat. unc.} \quad +0.29 \quad -0.31
\]

\[
b\text{-tagging efficiency and mis-tag rates} \quad +0.16 \quad -0.16
\]

\[
\text{Jet energy scale and resolution} \quad +0.14 \quad -0.14
\]

\[
\text{\(t\bar{t}H \) modelling} \quad +0.22 \quad -0.05
\]

\[
\text{\(t\bar{t} + \geq 1c \) modelling} \quad +0.09 \quad -0.11
\]

\[
\text{JVT, pileup modelling} \quad +0.03 \quad -0.05
\]

\[
\text{Other background modelling} \quad +0.08 \quad -0.08
\]

\[
\text{\(t\bar{t} + \text{light} \) modelling} \quad +0.06 \quad -0.03
\]

\[
\text{Luminosity} \quad +0.03 \quad -0.02
\]

\[
\text{Light lepton (e,\(\mu \)) id., isolation, trigger} \quad +0.03 \quad -0.04
\]

\[
\text{Total systematic uncertainty} \quad +0.57 \quad -0.54
\]

\[
\text{\(t\bar{t} + \geq 1b \) normalisation} \quad +0.09 \quad -0.10
\]

\[
\text{\(t\bar{t} + \geq 1c \) normalisation} \quad +0.02 \quad -0.03
\]

\[
\text{Intrinsic statistical uncertainty} \quad +0.21 \quad -0.20
\]

\[
\text{Total statistical uncertainty} \quad +0.29 \quad -0.29
\]

\[
\text{Total uncertainty} \quad +0.64 \quad -0.61
\]
Analysis Strategy
$t\bar{t}H$ multileptons

- Target Higgs decays with leptonic final states and leptonic $t\bar{t}$ decays
- Same sign and >3 lepton events reduce $t\bar{t}$ background
 - Requirements on (b-)jet multiplicities
 - Events categorised by number of leptons & hadronic taus
 - Wide range of yields and S/B purity
 - Seven final states in total

- Object level BDTs used to reduce non-prompt leptons and charge mis-ID
- Enhance separation from $t\bar{t}$, $t\bar{t}V$ with BDTs
 - Event count in $3\ell 1\tau_{had}$ and 4ℓ
Analysis Strategy

t\bar{t}H multileptons Results

<table>
<thead>
<tr>
<th>Channel</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Obs.</td>
</tr>
<tr>
<td>2\ell OS + 1\tau_{had}</td>
<td>0.9σ</td>
</tr>
<tr>
<td>1\ell + 2\tau_{had}</td>
<td>-</td>
</tr>
<tr>
<td>4\ell</td>
<td>-</td>
</tr>
<tr>
<td>3\ell + 1\tau_{had}</td>
<td>1.3σ</td>
</tr>
<tr>
<td>2\ell SS + 1\tau_{had}</td>
<td>3.4σ</td>
</tr>
<tr>
<td>3\ell</td>
<td>2.4σ</td>
</tr>
<tr>
<td>2\ell SS</td>
<td>2.6σ</td>
</tr>
<tr>
<td>Combined</td>
<td>4.1σ</td>
</tr>
</tbody>
</table>

- Binned profile likelihood across all regions
- **Observed significance of 4.1σ** for \(t\bar{t}H\) production (2.8σ exp)
- Additional cut based cross check analysis performed
 - Consistent results with the MVA based approach
 - 15% poorer sensitivity
- Leading systematics from \(t\bar{t}H\) and \(t\bar{t}V\) modelling, non-prompt lepton estimates and jet energy scale/resolution
Analysis Strategy

$t\bar{t}H (\gamma\gamma)$

- Small rate but very signal enriched regions with a continuous background
- Reconstruct Higgs as a narrow peak, use side bands to estimate background
 - Main background from non-resonant $\gamma\gamma$ and non-$t\bar{t}H$ production

- Categorise events by leptonic ($>1\ell$) and hadronic (0ℓ) $t\bar{t}$ decays
- Train BDTs to separate $t\bar{t}H$ from background in lep and had
 - Jet/lepton 4-vector info
 - Photon observables
 - E_T^{miss} and b-tagging
- Cut on BDT distributions to define signal rich regions
 - Seven regions in total

50% improvement in sensitivity

Johnny Raine (UniGe)
Analysis Strategy
$t\bar{t}H(H \rightarrow \gamma\gamma)$

$t\bar{t}H(\gamma\gamma)$ Results

- Unbinned maximum likelihood fit over $m_{\gamma\gamma}$ in range 105 – 160 GeV
 - Non-$t\bar{t}H$ production fixed to SM prediction
 - Function for $\gamma\gamma$ background derived in each regions
 - Leptonic regions: simulation
 - Hadronic regions: data driven from control region
- Observed significance of 4.1σ for $t\bar{t}H$ production (3.7σ expected)
 - Measured signal strength $\mu = 1.39^{+0.48}_{-0.42} = 1.39^{+0.42}_{-0.36}$ (stat.)$^{+0.23}_{-0.17}$ (syst.)
- Currently statistically limited (\sim29% stat uncertainty)
Analysis Strategy

$t\bar{t}H (H \rightarrow ZZ^* \rightarrow 4\ell)$

- **Extremely low rate but very high signal to background ratio** (up to 500%)
- Look at 4ℓ inv-mass window 115–130 GeV
- Categorise events by $t\bar{t}$ decay: leptonic (1 additional ℓ) and hadronic (0 additional ℓ)
 - Further split hadronic into two bins with BDT to enhance $t\bar{t}H$ purity
- **No observed events**
 - Fewer than one expected event
- Expected significance of 1.2σ
- Very statistically limited

<table>
<thead>
<tr>
<th>Region</th>
<th>$t\bar{t}H$</th>
<th>Non-$t\bar{t}H$ Higgs</th>
<th>Other bkg</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Had 2</td>
<td>0.169(31)</td>
<td>0.021(7)</td>
<td>0.008(8)</td>
<td>0</td>
</tr>
<tr>
<td>Had 1</td>
<td>0.216(32)</td>
<td>0.20(9)</td>
<td>0.22(12)</td>
<td>0</td>
</tr>
<tr>
<td>Lep</td>
<td>0.212(31)</td>
<td>0.0256(23)</td>
<td>0.015(13)</td>
<td>0</td>
</tr>
</tbody>
</table>
Combined Result

- Combination of all four analyses performed using profile likelihood method

Fit details

- Negligible overlap between events in each analysis
- Non-$t\bar{t}H$ Higgs production fixed to SM prediction
- Correlation scheme studied in detail

Observation of $t\bar{t}H$ production at 13 TeV. 5.8σ observed (4.9σ expected)

- Measured $t\bar{t}H$ cross section at $\sqrt{s} = 13$ TeV:
 \[\sigma_{t\bar{t}H} = 670 \pm 90^{+110}_{-100} \text{(stat)} \pm 100 \text{(syst)} \text{ fb}^{-1} \]

- Cross section $1.32 \times$ SM prediction, compatible with SM at around 1σ level
Combination Result

ATLAS
\(\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1} \)

- Some channels still very much limited by statistics
- Modelling uncertainties dominate the systematic uncertainties

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>(\Delta \sigma_{\bar{t}tH}/\sigma_{\bar{t}tH}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory uncertainties (modelling)</td>
<td>11.9</td>
</tr>
<tr>
<td>(\bar{t}t +) heavy flavour</td>
<td>9.9</td>
</tr>
<tr>
<td>(\bar{t}tH)</td>
<td>6.0</td>
</tr>
<tr>
<td>Non-(ttH) Higgs boson production modes</td>
<td>1.5</td>
</tr>
<tr>
<td>Other background processes</td>
<td>2.2</td>
</tr>
<tr>
<td>Experimental uncertainties</td>
<td></td>
</tr>
<tr>
<td>Fake leptons</td>
<td>9.3</td>
</tr>
<tr>
<td>Jets, (E_T^{\text{miss}})</td>
<td>5.2</td>
</tr>
<tr>
<td>Electrons, photons</td>
<td>4.9</td>
</tr>
<tr>
<td>Luminosity</td>
<td>3.2</td>
</tr>
<tr>
<td>(\tau)-lepton</td>
<td>3.0</td>
</tr>
<tr>
<td>Flavour tagging</td>
<td>2.5</td>
</tr>
<tr>
<td>MC statistical uncertainties</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Johnny Raine (UniGe) Vietnam 2018 8th August, 2018 14 / 16
Combination with Run 1

▶ Combine the 13 TeV result with the ATLAS Run 1 result ▶ EPJC 76 (2016) 6
 ▶ Additional 4.5 fb\(^{-1}\) 7 TeV and 20.3 fb\(^{-1}\) 8 TeV data
 ▶ 6.3\(\sigma\) observed significance, 5.1\(\sigma\) expected!

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Integrated</th>
<th>(t\bar{t}H) cross</th>
<th>Obs. sign.</th>
<th>Exp. sign.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>luminosity [fb(^{-1})]</td>
<td>section [fb]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H \rightarrow \gamma\gamma)</td>
<td>79.8</td>
<td>710 (+210)(^{-190}) (stat.) (+120)(^{-90}) (syst.)</td>
<td>4.1 (\sigma)</td>
<td>3.7 (\sigma)</td>
</tr>
<tr>
<td>(H \rightarrow \text{multilepton})</td>
<td>36.1</td>
<td>790 (+150)(^{-140}) (stat.) (+150)(^{-140}) (syst.)</td>
<td>4.1 (\sigma)</td>
<td>2.8 (\sigma)</td>
</tr>
<tr>
<td>(H \rightarrow b\bar{b})</td>
<td>36.1</td>
<td>400 (+150)(^{-140}) (stat.) (+150)(^{-140}) (syst.)</td>
<td>1.4 (\sigma)</td>
<td>1.6 (\sigma)</td>
</tr>
<tr>
<td>(H \rightarrow ZZ^* \rightarrow 4\ell)</td>
<td>79.8</td>
<td><900 (68% CL)</td>
<td>0 (\sigma)</td>
<td>1.2 (\sigma)</td>
</tr>
<tr>
<td>Combined (13 TeV)</td>
<td>36.1–79.8</td>
<td>670 (+90)(^{-100}) (stat.) (+110)(^{-100}) (syst.)</td>
<td>5.8 (\sigma)</td>
<td>4.9 (\sigma)</td>
</tr>
<tr>
<td>Combined (7, 8, 13 TeV)</td>
<td>4.5, 20.3, 36.1–79.8</td>
<td>–</td>
<td>6.3 (\sigma)</td>
<td>5.1 (\sigma)</td>
</tr>
</tbody>
</table>
Conclusion

- Search for $t\bar{t}H$ production performed at 13 TeV using 36.1 – 79.8 fb$^{-1}$ data
- Combination of several challenging analyses
 - Extensive use of multivariate techniques to enhance sensitivity
 - Large systematic uncertainties on modelling
 - Some channels statistically limited, will only become more sensitive!
- ATLAS observation of $t\bar{t}H$ with a significance of 6.3σ (5.1σ exp)
 - Direct observation of top Yukawa coupling
 - Measured $\sigma_{t\bar{t}H} = 670 \pm 90$(stat)$^{+110}_{-100}$(syst) fb$^{-1}$ at 13 TeV
 - Consistent with SM prediction $\sigma_{t\bar{t}H} = 507^{+35}_{-50}$ fb$^{-1}$
Backup
\[\frac{\sigma_{\text{ttH}}}{\sigma_{\text{SM}}} \]

\[\begin{align*}
\text{ttH (b\bar{b})} & : 0.79 \pm 0.61 (\pm 0.29, \pm 0.30) \\
\text{ttH (multilepton)} & : 1.56 \pm 0.42 (\pm 0.30, \pm 0.30) \\
\text{ttH (\gamma\gamma)} & : 1.39 \pm 0.48 (\pm 0.38, \pm 0.23) \\
\text{ttH (ZZ)} & : < 1.77 \text{ at 68\% CL} \\
\text{Combined} & : 1.32 \pm 0.28 (\pm 0.18, \pm 0.21)
\end{align*} \]

\[\begin{align*}
\text{Total} & = 13 \text{ TeV, 36.1 - 79.8 fb}^{-1} \\
\text{Stat.} & = 7, 8 \text{ TeV} \\
\text{Syst.} & = 4.5, 20.3 \text{ fb}^{-1} \\
\text{SM} & = 45 \text{ fb}^{-1} \\
\end{align*} \]
Modelling of $t\bar{t}$ is crucial to the analysis, $t\bar{t} + \text{HF}$ has large theory uncertainty

- Split into $t\bar{t} + \text{light}$, $t\bar{t} + \geq 1c$, $t\bar{t} + \geq 1b$
 - Further split $t\bar{t} + \geq 1b$ by number of additional b-hadrons in jets
- Nominal $t\bar{t}$ sample uses 5FS prediction
 - Use dedicated Sherpa 4FS $t\bar{t} + b\bar{b}$ prediction to improve modelling
 - Both additional b-quarks to NLO precision in QCD
 - Takes b-quark mass into account
 - Reweight relative $t\bar{t} + \geq 1b$ subcomponents to 4FS values
Systematic Source Description

<table>
<thead>
<tr>
<th>Systematic source</th>
<th>Description</th>
<th>$t\bar{t}$ categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$ cross-section</td>
<td>Up or down by 6%</td>
<td>All, correlated</td>
</tr>
<tr>
<td>$k(t\bar{t} + \geq 1c)$</td>
<td>Free-floating $t\bar{t} + \geq 1c$ normalization</td>
<td>$t\bar{t} + \geq 1c$</td>
</tr>
<tr>
<td>$k(t\bar{t} + \geq 1b)$</td>
<td>Free-floating $t\bar{t} + \geq 1b$ normalization</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>SHERPA5F vs. nominal</td>
<td>Related to the choice of NLO event generator</td>
<td>All, uncorrelated</td>
</tr>
<tr>
<td>PS & hadronization</td>
<td>POWHEG+HERWIG 7 vs. POWHEG+PYTHIA 8</td>
<td>All, uncorrelated</td>
</tr>
<tr>
<td>ISR / FSR</td>
<td>Variations of μ_R, μ_F, h_{damp} and A14 Var3c parameters</td>
<td>All, uncorrelated</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1c$ ME vs. inclusive</td>
<td>MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)</td>
<td>$t\bar{t} + \geq 1c$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ SHERPA4F vs. nominal</td>
<td>Comparison of $t\bar{t} + bb$ NLO (4F) vs. POWHEG+PYTHIA 8 (5F)</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ renorm. scale</td>
<td>Up or down by a factor of two</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ resumm. scale</td>
<td>Vary μ_Q from $H_T/2$ to μ_{CMMPS}</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ global scales</td>
<td>Set μ_Q, μ_R, and μ_F to μ_{CMMPS}</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ shower recoil scheme</td>
<td>Alternative model scheme</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ PDF (MSTW)</td>
<td>MSTW vs. CT10</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ PDF (NNPDF)</td>
<td>NNPDF vs. CT10</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ UE</td>
<td>Alternative set of tuned parameters for the underlying event</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 1b$ MPI</td>
<td>Up or down by 50%</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
<tr>
<td>$t\bar{t} + \geq 3b$ normalization</td>
<td>Up or down by 50%</td>
<td>$t\bar{t} + \geq 1b$</td>
</tr>
</tbody>
</table>
$t\bar{t}H (H \rightarrow b\bar{b})$ - Impact of Systematic Uncertainties

- Analysis is currently systematically limited
- Largest uncertainties from $t\bar{t} + HF$ modelling
- Also notable impact:
 - Limited MC stats.
 - Flavour tagging
 - Jet energy scale and resolution
- Large number of constrained two-point systematics
Reco BDT Exploits correlations within each combination
Reco BDT Provides jet assignments based on $t\bar{t}H (H \rightarrow b\bar{b})$
LHD Combines all combinations together into one discriminant
LHD+MEM Calculate both signal and background likelihoods
MEM Calculates discriminant at parton level using 4-vectors
Looking at three signal regions post fit

- $t\bar{t}H$ shown for extracted signal strength $\mu = 0.84^{+0.64}_{-0.61}$
- Showing two most signal enriched regions and boosted signal region

See good post-fit agreement between data and simulation in all regions
Channel Selection criteria

Common
- \(N_{\text{jets}} \geq 2 \) and \(N_{b\text{-jets}} \geq 1 \)

2\ell SS
- Two very tight light leptons with \(p_T > 20 \) GeV
- Same-charge light leptons
- Zero medium \(\tau_{\text{had}} \) candidates
- \(N_{\text{jets}} \geq 4 \) and \(N_{b\text{-jets}} < 3 \)

3\ell
- Three light leptons with \(p_T > 10 \) GeV; sum of light-lepton charges \(\pm 1 \)
- Two same-charge leptons must be very tight and have \(p_T > 15 \) GeV
- The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT
- Zero medium \(\tau_{\text{had}} \) candidates
- \(m(\ell^+\ell^-) > 12 \) GeV and \(|m(\ell^+\ell^-) - 91.2 \) GeV| > 10 GeV for all SFOC pairs
- \(m(3\ell) > 125 \) GeV > 5 GeV

4\ell
- Four light leptons; sum of light-lepton charges 0
- Third and fourth leading leptons must be tight
- \(m(\ell^+\ell^-) > 12 \) GeV and \(|m(\ell^+\ell^-) - 91.2 \) GeV| > 10 GeV for all SFOC pairs
- \(m(4\ell) > 125 \) GeV > 5 GeV
- Split 2 categories: \(Z \)-depleted (0 SFOC pairs) and \(Z \)-enriched (2 or 4 SFOC pairs)

1\ell + 2\tau_{\text{had}}
- One tight light lepton with \(p_T > 27 \) GeV
- Two medium \(\tau_{\text{had}} \) candidates of opposite charge, at least one being tight
- \(N_{\text{jets}} \geq 3 \)

2\ell SS + 1\tau_{\text{had}}
- Two very tight light leptons with \(p_T > 15 \) GeV
- Same-charge light leptons
- One medium \(\tau_{\text{had}} \) candidate, with charge opposite to that of the light leptons
- \(N_{\text{jets}} \geq 4 \)
- \(|m(ee) - 91.2 \) GeV| > 10 GeV for ee events

2\ell OS + 1\tau_{\text{had}}
- Two loose and isolated light leptons with \(p_T > 25, 15 \) GeV
- One medium \(\tau_{\text{had}} \) candidate
- Opposite-charge light leptons
- One medium \(\tau_{\text{had}} \) candidate
- \(m(\ell^+\ell^-) > 12 \) GeV and \(|m(\ell^+\ell^-) - 91.2 \) GeV| > 10 GeV for the SFOC pair
- \(N_{\text{jets}} \geq 3 \)

3\ell + 1\tau_{\text{had}}
- 3\ell selection, except:
- One medium \(\tau_{\text{had}} \) candidate, with charge opposite to the total charge of the light leptons
- The two same-charge light leptons must be tight and have \(p_T > 10 \) GeV
- The opposite-charge light lepton must be loose and isolated
$t\bar{t}H$ ML - BDTs

<table>
<thead>
<tr>
<th>Light lepton</th>
<th>2ℓSS</th>
<th>3ℓ</th>
<th>4ℓ</th>
<th>1ℓ+2τ_{had}</th>
<th>2ℓSS+1τ_{had}</th>
<th>2ℓOS+1τ_{had}</th>
<th>3ℓ+1τ_{had}</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_{had}</td>
<td>2T*</td>
<td>1L*, 2T*</td>
<td>2L, 2T</td>
<td>1T</td>
<td>2T*</td>
<td>2L†</td>
<td>1L†, 2T</td>
</tr>
<tr>
<td>N${\text{jets}}$, N${b}$-jets</td>
<td>≥ 4, = 1, 2</td>
<td>≥ 2, ≥ 1</td>
<td>≥ 2, ≥ 1</td>
<td>≥ 3, ≥ 1</td>
<td>≥ 4, ≥ 1</td>
<td>≥ 3, ≥ 1</td>
<td>≥ 2, ≥ 1</td>
</tr>
<tr>
<td>Uncertainty Source</td>
<td>$\Delta \mu$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}H$ modeling (cross section)</td>
<td>+0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>+0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-prompt light-lepton estimates</td>
<td>+0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jet flavor tagging and τ_{had} identification</td>
<td>+0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}W$ modeling</td>
<td>+0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}Z$ modeling</td>
<td>+0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other background modeling</td>
<td>+0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>+0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}H$ modeling (acceptance)</td>
<td>+0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fake τ_{had} estimates</td>
<td>+0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other experimental uncertainties</td>
<td>+0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation sample size</td>
<td>+0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge misassignment</td>
<td>+0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>+0.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-fit impact on μ:
- $\theta=\bar{\theta}+\Delta \theta$
- $\theta=\bar{\theta}-\Delta \theta$

Post-fit impact on μ:
- $\theta=\bar{\theta}+\Delta \theta$
- $\theta=\bar{\theta}-\Delta \theta$

Nuis. Param. Pull

ATLAS

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$

- $t\bar{t}H$ cross section (scale variations)
- Jet energy scale (pileup subtraction)
- Luminosity
- Jet energy scale (flavor comp. 2/SS
- Jet energy scale variation 1
- $t\bar{t}W$ cross section (scale variations)
- $t\bar{t}Z$ cross section (scale variations)
- τ_{had} identification
- $t\bar{t}H$ cross section (PDF)
- $t\bar{t}H$ modeling (shower tune)
- Flavor tagging c-jet/τ_{had}
- rare top decay cross section
- 3/τ Non-prompt closure
- $t\bar{t}W$ modeling (generator)
- Non-prompt stat. in 4th bin of 3/τ SR

Johnny Raine (UniGe)
8th August, 2018
Vietnam 2018
$t\bar{t}H (H \rightarrow \gamma\gamma)$ - Unweighted $m_{\gamma\gamma}$

![Graph showing data, continuum background, total background, and signal plus background. The graph plots events per 2.5 GeV bin against $m_{\gamma\gamma}$ in GeV. The data shows a peak around $m_{\gamma\gamma} = 125.09$ GeV, consistent with the Higgs boson mass. The ATLAS collaboration notes that the integrated luminosity is 79.8 fb^{-1} at $\sqrt{s} = 13$ TeV.]
$t\bar{t}H (H \rightarrow \gamma\gamma)$ - Unweighted $m_{\gamma\gamma}$

- BDT trained to select three jets to form hadronic top
- Does not enter the analysis
- Top mass reconstructed in bins with highest S/B
- Excess in events around top mass consistent with $t\bar{t}H$