LHCb prospects for V_{ub} and V_{cb}

Mika Vesterinen
University of Warwick
1st October 2018

XIII Meeting on B Physics:
Synergy between LHC and SUPERKEKB
in the Quest for New Physics
Outline

• Semileptonic decays at LHCb.
• Current results and analysis activities.
• Future prospects.
LHCb

Excellent reconstruction of charged final states, while neutrals and missing energy are more challenging.

Well suited to measurements of exclusive semileptonic decays, to charged final states, of a range of b hadrons.
Suitable observables

• The b cross section isn’t known.
• We can measure ratios of BF
 s.
• And normalised differential decay rates.
Operations

LHCb Integrated Recorded Luminosity in pp, 2010-2018

- 2018 (6.5 TeV): 1.88/fb
- 2017 (6.5+2.51 TeV): 1.71/fb + 0.10/fb
- 2016 (6.5 TeV): 1.67/fb
- 2015 (6.5 TeV): 0.33/fb
- 2012 (4.0 TeV): 2.08/fb
- 2011 (3.5 TeV): 1.11/fb
- 2010 (3.5 TeV): 0.04/fb

Month of year

Integrated Recorded Luminosity (1/fb)
The typical signature(s)
The typical signature(s)
The typical signature(s)

Discrimination between decays

- Isolation
- Vertex topology
- Kinematics
The typical signature

LHCb simulation

- $p\mu\nu$ low σ_{mcorr}
- $p\mu\nu$ high σ_{mcorr}
- $\Lambda_c\mu\nu$ low σ_{mcorr}
- $\Lambda_c\mu\nu$ high σ_{mcorr}

Kinematics

Well known formula for missing 3-momentum using topological information, but subject to quadratic ambiguity.

Dambach, Langenegger, Starodumov, NIM A569 (2006) 824
Well known formula for missing 3-momentum using topological information, but subject to quadratic ambiguity.

Dambach, Langenegger, Starodumov, NIM A569 (2006) 824

Don’t need to choose randomly though.

JHEP (2017) 2017: 21

Closest to unbiased momentum estimator

Random
Kinematic “tag” approach

We can further impose $m(\Lambda_b \pi) = m(\Sigma_b)$.

Other possibilities, e.g. $B_s^{**} \rightarrow BK$.

Let’s see some measurements!
Ratio of V_{ub} and V_{cb} decays of the Λ_b
Ratio of V_{ub} and V_{cb} decays of the Λ_b

$LHCb$ simulation

- both solutions
- one solution

q^2 selection efficiency [%]

q^2 [GeV^2/c^4]
Ratio of V_{ub} and V_{cb} decays of the Λ_b
Ratio of V_{ub} and V_{cb} decays of the Λ_b

\[
\frac{\mathcal{B}(\Lambda_b^0 \rightarrow p\mu^-\bar{\nu}_\mu)_{q^2>15\text{ GeV}/c^2}}{\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_c^+\mu^-\bar{\nu}_\mu)_{q^2>7\text{ GeV}/c^2}} = \frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004 \pm 0.004
\]

(1.00 ± 0.04 ± 0.08) × 10^{-2}

<table>
<thead>
<tr>
<th>Source</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(\Lambda_c^+ \rightarrow pK^+\pi^-)$</td>
<td>4.7% ± 5.3%</td>
</tr>
<tr>
<td>Trigger</td>
<td>3.2%</td>
</tr>
<tr>
<td>Tracking</td>
<td>3.0%</td>
</tr>
<tr>
<td>Λ_c^+ selection efficiency</td>
<td>3.0%</td>
</tr>
<tr>
<td>$\Lambda_b^0 \rightarrow N^*\mu^-\bar{\nu}_\mu$ shapes</td>
<td>2.3%</td>
</tr>
<tr>
<td>Λ_b^0 lifetime</td>
<td>1.5%</td>
</tr>
<tr>
<td>Isolation</td>
<td>1.4%</td>
</tr>
<tr>
<td>Form factor</td>
<td>1.0%</td>
</tr>
<tr>
<td>Λ_b^0 kinematics</td>
<td>0.5%</td>
</tr>
<tr>
<td>q^2 migration</td>
<td>0.4%</td>
</tr>
<tr>
<td>PID</td>
<td>0.2%</td>
</tr>
<tr>
<td>Total</td>
<td>7.8% ± 8.2%</td>
</tr>
</tbody>
</table>
Form factors of $\Lambda_b \rightarrow \Lambda_c \mu \nu$

Very interesting from an HQET point of view, but only one experimental study from Delphi.

$$\frac{d\Gamma}{dw} = G K(w) \xi^2_B(w) \quad w \equiv \mathcal{U}_{\Lambda_b}^0 \cdot \mathcal{U}_{\Lambda_c}^+$$

Predictions of the form factor slope at zero recoil.

<table>
<thead>
<tr>
<th>ρ^2</th>
<th>Approach</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.35 ± 0.13</td>
<td>QCD sum rules</td>
<td>22</td>
</tr>
<tr>
<td>$1.2^{+0.8}_{-1.1}$</td>
<td>Lattice QCD (static approximation)</td>
<td>23</td>
</tr>
<tr>
<td>1.51</td>
<td>HQET + Relativistic wave function</td>
<td>21</td>
</tr>
</tbody>
</table>
Form factors of $\Lambda_b \to \Lambda_c \mu \nu$

First challenge is to subtract $\Lambda_b \to \Lambda_c \pi \pi \mu \nu$
Form factors of $\Lambda_b \to \Lambda_c \mu \nu$

$$1 - \rho^2 (w - 1) + \frac{1}{2} \sigma^2 (w - 1)^2 + \ldots$$

<table>
<thead>
<tr>
<th>Shape</th>
<th>ρ^2</th>
<th>σ^2</th>
<th>correlation coefficient</th>
<th>χ^2/DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential*</td>
<td>1.65 ± 0.03</td>
<td>2.72 ± 0.10</td>
<td>100%</td>
<td>5.3/5</td>
</tr>
<tr>
<td>Dipole*</td>
<td>1.82 ± 0.03</td>
<td>4.22 ± 0.12</td>
<td>100%</td>
<td>5.3/5</td>
</tr>
<tr>
<td>Taylor series</td>
<td>1.63 ± 0.07</td>
<td>2.16 ± 0.34</td>
<td>97%</td>
<td>4.5/4</td>
</tr>
</tbody>
</table>
Semileptonic width ratios among beauty hadrons

I.I. Bigi,a Th. Mannel,b N. Ural'tseva,b,c

Abstract

We present predictions based on the heavy quark expansion in QCD. We find $SU(3)$ breaking in B mesons suppressed in the framework of the HQE. B_s is expected to have the semileptonic width about 1\% lower and Λ_b about 3\% higher when compared to $\Gamma_{\text{s}l}(B_d)$. The largest partial-rate preasymptotic effect is Pauli interference in the $b \rightarrow u \ell \nu$ channel in Λ_b, about $+10\%$. We point out that the Ω_b semileptonic width is expected not to exceed that of B_d and may turn out to be the smallest among stable b hadrons despite the large mass. The underlying differences with phase-space models are briefly addressed through the heavy mass expansion.
Semileptonic width ratios among beauty hadrons

I.I. Bigi, Th. Mannel, N. Uraltsev

\[\Gamma(\Lambda_b^0 \to X_c \mu \nu X) = \tau_B \times \mathcal{B} \mathcal{F}(B \to X_c \mu \nu X)(1 + \delta) \]

\[\delta = (3 \pm 1.5) \times 10^{-2} \]

Abstract

We present predictions based on the heavy quark expansion in QCD. We find $SU(3)$ breaking in B mesons suppressed in the framework of the HQE. B_s is expected to have the semileptonic width about 1% lower and Λ_b about 3% higher when compared to $\Gamma_{\text{sl}}(B_d)$. The largest partial-rate preasymptotic effect is Pauli interference in the $b \to u \ell \nu$ channel in Λ_b, about $+10\%$. We point out that the Ω_b semileptonic width is expected not to exceed that of B_d and may turn out to be the smallest among stable b hadrons despite the large mass. The underlying differences with phase-space models are briefly addressed through the heavy mass expansion.
Semileptonic width ratios among beauty hadrons

I.I. Bigi, Th. Mannel, N. Uraltsev

\(a \) Department of Physics, University of Notre Dame du Lac, Notre Dame, IN 46556, USA
\(b \) Theoretische Physik 1, Fachbereich Physik, Universität Siegen
\(c \) St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia

Abstract

We present predictions based on the heavy quark expansion in QCD. We find \(SU(3) \) in \(\Lambda_b \), about +10%. We point out that the \(\Omega_b \) semileptonic width is expected not to exceed that of \(B_d \) and may turn out to be the smallest among stable \(b \) hadrons despite the large mass. The underlying differences with phase-space models are briefly addressed through the heavy mass expansion.
Ω_c lifetime study, with $\Omega_b \to \Omega_c \mu \nu$
Ω_c lifetime study, with $\Omega_b \rightarrow \Omega_c \mu \nu$

Ξ_c^+ (PDG)

Λ_c^+ (PDG)

Ξ_c^0 (PDG)

Ω_c^0 (PDG)

E687 [1995]

WA89 [1995]

FOCUS [2003]

PDG Average

PRL 121, 092003 (2018)
Ω_c lifetime study, with $\Omega_b \to \Omega_c\mu\nu$

$268 \pm 24 \pm 10 \pm 2$ fs
Future synergy with Belle and BES

Huge potential for LHCb to measure form-factors and $|V_{ub}|/|V_{cb}|$ ratios with a range of b hadrons.

The full exploitation requires knowledge of the charm hadron branching ratios.

E.g. $\text{BF}(\Lambda_c \rightarrow pK\pi)$ was the dominant experimental source of uncertainty in Nature Phys 10 (2015) 1038

Rumours of BEPC plans to reach $\Xi_c\Xi_c$ threshold.

Hai-Ping Peng slides @ICHEP2018.
B decays with B_s^{**} tag

PRL 110, 151803 (2013)
Application to $B \rightarrow D^{(*)}\mu\nu$

Aim for contribution to understanding of inclusive-exclusive gap puzzle...
Kinematic resolution

\[\text{Fraction} / (0.05 \text{ GeV}^2) \]

![Graph showing kinematic resolution with various decay modes labeled: $D^0 \mu^- \bar{\nu}_\mu$, $D^{*0} \mu^- \bar{\nu}_\mu$, $D^{**0} \mu^- \bar{\nu}_\mu$. The graph plots m_{miss}^2 against the fraction.]

LHCb simulation
The D fractions fit

$$f_{D^0} = 0.25 \pm 0.06$$

$$f_{D^{*0}} = 0.21 \pm 0.07$$
Purely leptonic: $B \rightarrow \mu \mu \mu \nu$

(+\(\rho, \omega\) interference)

Naive expected BF \(\sim 10^{-8}\)

Vector dominance prediction of \(1.3 \times 10^{-7}\)

Purely leptonic: $B \rightarrow \mu \mu \mu \nu$

$\min(m_{\mu+\mu-}) < 980 \text{ MeV}$

95% C.L. U.L. of 1.4×10^{-8}
Plans for $B \rightarrow p\bar{p}\mu\nu$

Evidence from Belle

$\mathcal{B}(B^- \rightarrow p\bar{p}\mu\bar{\nu}) = (3.1^{+3.1}_{-2.4} \pm 0.7) \times 10^{-6}$

PRD 89, 011101 (2014)
B_s decays

Strong motivation from LQCD to measure

Recent dedicated study on the ratio.

Monahan et al., 1808.09285
Progress towards $B_s \rightarrow K\mu\nu/B_s \rightarrow D_s\mu\nu$

Analysis in progress with 3/fb of Run-I data

Similar idea to $p\mu\nu/\Lambda_c\mu\nu$, but backgrounds larger.

Target two q^2 bins across the full range.

See Marta Calvi’s talk at Challenges in Semileptonic B Decays
Longer term aspirations for differential measurement

Toy measurement of $d\Gamma/dq^2$ of $B_s \rightarrow K\mu\nu$
Towards $B_s \rightarrow D_s^{(*)}$ form factors

Measurement of B_s - B_d lifetime difference, and τ_{D_s}.

$R(B_s^0/B^0) = 0.0115 \pm 0.0053 \pm 0.0041 \text{ ps}^{-1}$
The long term future prospects
Physics Case for an LHCb Upgrade II

opportunities in flavour physics, and beyond, in the HL-LHC era
The Upgrade II detector

- Fast timing to suppress pileup.
- Higher granularity and radiation hardness.
The VELO and the RF foil
The VELO and the RF foil
Effect of improved corrected mass resolution?

Toy study with simulated $B_s \rightarrow K\mu\nu$ signal
Low momentum particle ID

Smaller LQCD uncertainties at low q^2

Hadron often below the RICH PID threshold…
Low momentum particle ID

Smaller LQCD uncertainties at low q^2

Hadron often below the RICH PID threshold…

TORCH
Low momentum tracking

The $[B_s^{**} \rightarrow BK, \Sigma_b \rightarrow \Lambda_b \pi \text{ etc...}]$ approach is statistically challenging, which isn’t helped by losing many tagging kaons in the magnet.

Magnet stations boost the useable acceptance by 60%.
Outlook

Exclusive $b \to \{c, u\} \mu \nu$ decays are an area with really interesting synergies between LHCb with Belle(-II).

Exciting to think about all of the measurements with unexplored decays and observables that can go into future figures like this:
Backup slides follow from here...
$\Omega_b^- \rightarrow \Omega_c^0 \mu^- \bar{\nu} X$

- Data
- Fit

$\tau = 69 \text{ fs}$
Figure 5: Missing-mass distribution for data and estimated background contributions in the (left) same-sign kaon sample and (right) opposite-sign sample. The other background decays include contributions from misreconstructed backgrounds, and semileptonic decays of B_s^0 and Λ_b^0 mesons. The remainder of the SSK sample not from B^0 or other background decays is used to define the background contribution from B^- semileptonic decays. This is then extrapolated to the OSK sample, where the remainder is composed of signal. The background distributions are stacked.
Candidates/ (8 MeV)

\[m(pK^{-}\pi^{+}\pi^{+}\pi^{-}) - m(pK^{-}\pi^{+}) + m_{\text{PDG}}(\Lambda_c^+) \text{ [MeV]} \]
The graph shows the unfolded dN_{corr} / dq^2 distribution as a function of q^2_{unfolded} (GeV2) with error bars for each point. The data points are marked with black circles and triangles, and the shaded regions represent the uncertainty ranges. The curve is a fit to the data. The LHCb experiment is credited at the top right of the graph.