ATLAS Searches for Diboson Resonances

Gabriele Chiodini - INFN Lecce and Università del Salento on behalf of ATLAS collaboration

SUSY2018 Barcelona, July 23-27, 2018
International Conference on Supersymmetry and Unification of Fundamental Interactions 2018
Outline and motivations

The most compelling argument of New Physics at TeV scale is the extreme fine tuning of quantum corrections involving t, γ, W, Z and H in order to keep the observed Higgs mass close to the electroweak scale.

$$\frac{M_H^2}{(125 \text{ GeV})^2} = - \frac{3}{8\pi^2} \lambda_t^2 \Lambda^2 + \frac{9}{64\pi^2} g^2 \Lambda^2 - 2\mu^2$$

Tuning for $\Lambda_{\text{cut-off}} = 10 \text{ TeV}$

Fine tuning $< 10\%$ \Rightarrow $\Lambda_{\text{NP}} \sim 1 \text{ TeV}$

New resonances coupled to $\gamma/W/Z/H$ generally expected at multi-TeV scale. The Higgs itself could be the first of a series of di-boson resonances waiting discovery at LHC.
Benchmark models

Three models differing from new boson(s) spin:

Spin 0: Extended Higgs sector (2HDM, ew-singlet model SUSY, ...)
 - Heavy scalars H’

Spin 1: Heavy Vector Triplets (HVT) → W’-W’+Z’
 - Additional SU(2) symmetry
 - Small set of parameters:
 - Mass M_{V’}
 - Coupling to Bosons and Higgs g_V (enable VV, VH, HH decays)
 - Universal coupling to fermions g_F = g^2_{EW}/g_F
 - Model A: equal BRs to fermions and bosons (g_V=1) → Extended Gauge Symm.
 - Model B: couplings to fermions suppressed (g_V=3) → Minimal Composite Higgs

Spin 2: KK graviton from bulk Randall-Sundrum model → G*
 - KK graviton in 5D warped ADS space with SM particles on 1 TeV brane extending into the “bulk”.
 - Couplings to light fermions and VBF production suppressed
Categorization in production mechanisms increases sensitivity

- **Drell-Yan**
 - Heavy Vector Triplet W'

- **gluon-gluon fusion**
 - Heavy scalar - RS bulk G^*

- **Vector Boson Fusion**
 - Heavy scalar/vector

VBF

Two opposite hemisphere jets, j_1 and j_2, with large rapidity separation and large invariant mass

Ex. $VV \rightarrow llqq$:

- $\eta_{j_1} \cdot \eta_{j_2} < 0$
- $|\Delta \eta_{j_1j_2}| > 4.7$
- $m_{j_1j_2} > 770$ GeV
Current status of VV searches in ATLAS

<table>
<thead>
<tr>
<th></th>
<th>W→</th>
<th>Z→</th>
<th>H→</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ll</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combination increases sensitivity

THIS TALK: hadronic and semileptonic

- qqqq ~ 45%
- qql(v)v ~ 15%
- qql, lv lv lvv ~ 5%
- llvv ~ 1%
- llll ~ 0.5%

See P.J.Falke and V. Pascuzzi

Not treated here: Search for X→γ+W/Z/H→γ+fat jet (arxiv:1805.01908) NEW

See plenary X.C.Vidal

"Exotic searches - prompt signatures"
Analysis strategy

1. Search for a resonant structure into invariant mass or broad enhancement into transverse mass.
2. Background estimation: full data-driven or/and MC based.

Best performance at high masses where BG is smaller.
Jet trimming and boosted objects

Trimming removes soft QCD and pile-up and leave collinear radiation in jets.

2 resolved jets $R=0.4$
1 large-jets $R=1$

$W/Z/H$

Boosted jet p_T

$M_X > 200 \text{GeV}$

$D_2^{(\beta)} = \sum_{i < j < k \in J} p_{T_i} p_{T_j} p_{T_k} (\Delta R_{ij} \Delta R_{ik} \Delta R_{jk})^\beta$

- A. Boosted W/Z tagging with $D_2^{\beta=1}$
- B. Boosted H tagging with sub-jets b-tag

+ M_J
V and H tagging performance

ATLAS search of $X \rightarrow VV \rightarrow JJ$

@ 13 TeV 79.8 fb$^{-1}$

ATLAS Simulation Preliminary

$\sqrt{s} = 13$ TeV

anti k_{T} $R=1.0$, WZ \rightarrow $qqqq$

$|\eta^{jet}|<2.0$, $p_{T}^{jet}>200$ GeV

D2 resolution for topo-cluster jets and jets built using combined and neutral Track CaloClusters.

VH signal acceptance \times efficiency including trigger, reconstruction and selection

ATLAS search of

$X \rightarrow VH \rightarrow qqbb/qqcc$

arXiv:1707.06958
VV fully hadronic: VV → JJ

Selection:
- Highest BR ~ 50%
- Merged regime only: 2 large-R jets
- 5 non exclusive SR: WW, ZZ, WZ, WW+WZ, WW+ZZ

BG evaluation fully data-driven:
- Multi-jets QCD (~85%), diboson, V+j, ttbar.
- Binned ML fit to m_{JJ} spectrum assuming a smoothly falling distribution
- 3 VR inverting |Δy_{JJ}| cut and V-tag of WZ SR

$$\frac{dn}{dx} = p_1(1 - x)^{p_2 - \xi}x^{-p_3}$$
VH fully hadronic: VH→JJ

Selection:
- 2 large-R jets
- Higher mass jet is the H candidate and the other is W/Z tagged.
- WH/ZH overlap by ∼60%.
- Signal regions with 1-2 b-tags.

BG estimation:
- Multi-jets QCD >90%.
- Data-driven estimation:
 - functional form from CR with 0-tags.
 - normalization and corrections from high SB mass of the Higgs.
HH fully hadronic: HH→bbbb, HH→JJ

Boosted selection:
- 36.1 fb-1 from fat-jet trigger
- Categorise into 2,3,4 b-tagged track-jets

Resolved selection:
- 27.5 fb-1 from b-jet trigger
- Pair highest score b-jets based on ΔR_{jj} and Δm_{2j}

BG evaluation:
- Multi-jets QCD shape from lower b-tag data and ttbar shape from MC.
- Correct iteratively multi-jets QCD kinematics to higher b-tag data by reweights derived from SB data
- BG’s normalisation from simultaneous fit to 3 BG enriched regions and Higgs SB
HH fully hadronic: $HH \rightarrow b\bar{b}b\bar{b}$, $HH \rightarrow JJ$

Results:
- Simultaneous fit to resolved and boosted discriminant M_{4j} and M_{2J}
- Limits on mass range: 260–1400 GeV for resolved and 800–3000 GeV for boosted
- Set limits on heavy scalar and spin-2 bulk RS graviton

ATLAS
- $\sqrt{s} = 13$ TeV, 27.5-36.1 fb$^{-1}$
- Observed 95% CL limit
- Expected 95% CL limit
- Local dev. 2.5 σ
- 313 GeV
- Global 2.3 σ
- $M_{hh} = 280$ GeV

$\sigma(pp \rightarrow G_{kk} \rightarrow b\bar{b}b\bar{b})$ vs $m(G_{kk})$ (TeV)

$\sigma(pp \rightarrow \text{Scalar} \rightarrow b\bar{b}b\bar{b})$ vs $m($Scalar$)$ (TeV)
ZV → llqq, vvqq semi-leptonic

ZV → llqq selection:
7 signal regions to increase sensitivity:
• Merged: one large R jet W/Z tagged (dominant above 800 GeV)
 • splitted in High and Low Purity SR defined by <50% and 50-80% of W/Z tagger Work Point.
• Resolved: two small radius jets with invariant mass compatible to W/Z
• ggF/DY splitted in untag and b-tag

ZV → vvqq selection:
similar to ZV → llqq but:
• Only Merged selection
• VBF looser cut m_{j1j2} > 630 GeV
• No leptons and E_{Tmiss} > 250 GeV
• Topological cuts to suppress multi-jets

BG evaluation data-driven:
• 7 CR for Z+jets (from qq SB)
• 4 CR for W+jets (from qq SB)
• 5 CR for ttbar (from eu selection)
ZV → \(llqq\), \(vvqq\) semi-leptonic

- Dominant BG is Z+jet for both but for \(llvv\) also W+jet and t\(t\)\(\bar{t}\) are significant
- \(V+\)jets and \(t\(t\)\(\bar{t}\)\) normalization from CR, di-boson from MC

VBF xsec smaller than ggF
Sensitivity often larger for VBF than ggF
WV → bqq semi-leptonic

Selection:
- VBF and ggF/DY categorization
- Merged and Resolved selections
- 1 lepton + E_T^{miss}
- $E_T^{miss}/p_T(l\nu) > 0.2$ suppress Multi-jets QCD Background

BG evaluation:
- 50-70% W+jets, 20-30% ttbar
- 5% Z+jets+di-boson+single t
- Multi-jets <1% for Merged and 5% for Resolved
Selection:

- Resolved and Merged selections for $H \rightarrow bb$ with priority to resolved for better invariant mass resolution and less BG.
- Signal discriminant:
 - 0-lepton is ZH transverse mass
 - 1-lepton WH mass with two-fold ambiguity
 - 2-leptons ZH invariant mass.
- Many cuts to remove Multi-jets QCD and non-collision BG to 10^{-4} negligible level.

BG evaluation:

- 0(2)-lepton: Z+jets, tt, W+jets
- 1-lepton: tt, single t, W+jets

<table>
<thead>
<tr>
<th>Fit</th>
<th>Channel</th>
<th>Resolved signal regions</th>
<th>Merged signal regions</th>
<th>Resolved control regions</th>
</tr>
</thead>
</table>
| A | 0-lepton 2-lepton | 1, 2, 3+ b-tag | 1, 2 b-tag, and 1, 2 b-tag add. b-tag | $1+2 b$-tag, $3+ b$-tag $e\mu$
| Z', W' | 0-lepton 1-lepton 2-lepton | 1, 2 b-tag | 1, 2 b-tag | $1+2 b$-tag m_{jj} sideband |

Definition of SR and CR different for V decay mode and model hypothesis

- CP-odd scalar boson $A \rightarrow ZHbb$
Combination at 36.1 fb$^{-1}$

HVT $V' \rightarrow VV + VH$

- **HVT A**: 4.2 TeV
- **HVT B**: 4.5 TeV

$G_{KK} \rightarrow WW + ZZ$

- **2.2 TeV**
Conclusions

- Di-boson resonances searches at TeV scale are strongly motivated by naturalness principle
- Improving reconstruction and advanced analyses techniques we can get the most out of the data:
 - Boosted object tagging
 - New techniques in jet reconstruction and b-tagging
 - Machine learning methods applied to object definition and analysis selection
 - Statistical combinations of different decay modes
- With 2018 data an integrated luminosity of 140 fb$^{-1}$ is expected

A bright future in front of us with full run II, run III and HL-LHC
Event topology

Merged or resolved W/Z/H

0 leptons

VV(H)

Merged or resolved W/Z/H

1 lepton + MET

WV(H)

Merged or resolved W/Z/H

2 leptons

ZV(H)

Merged or resolved W/Z/H

0 lepton + MET

ZV(H)

Merged or resolved W/Z/H
Jet trimming

Jet trimming

Initial jet

Trimmed jet

\(\frac{p_T'}{p_T} < f_{cut} \)

ATLAS Simulation
anti-\(k_t \) LCW jets, 600 \(\leq p_T^\text{jet} < 800 \) GeV

- Ungroomed \(Z' \rightarrow t\bar{t} \)
- Ungroomed Dijets
- Trimmed \(Z' \rightarrow t\bar{t} \)
- Trimmed Dijets

JHEP 1309 (2013) 076
Jet substructure

- The $D_2^{β=1}$ variable is useful in identifying jets with two-prong substructures.
- Defined from n-point energy correlation functions:

$$E_{CF1}(β) = \sum_{i \in J} p_{T_i}$$
$$E_{CF2}(β) = \sum_{i < j \in J} p_{T_i} p_{T_j} (ΔR_{ij})^β$$
$$E_{CF3}(β) = \sum_{i < j < k \in J} p_{T_i} p_{T_j} p_{T_k} (ΔR_{ij} ΔR_{ik} ΔR_{jk})^β$$

$$D_2^{β=1} = E_{CF3} \left(\frac{E_{CF1}}{E_{CF2}}\right)^3$$

ATLAS Simulation

$\sqrt{s} = 8$ TeV

$H_T^{Truth} < 1.2$

$500 < p_T^{Truth} < 1000$ GeV

M Cut

anti-k_T, $R=1.0$ jets

Trimmed ($f_{cut} = 5\%, R_{sub} = 0.2$)

EPJC 76(3), 1-47
Combined jet mass

- The jet mass resolution is further improved by combining calorimeter and tracking information:

\[m_J = w_{\text{calo}} \times m_j^{\text{calo}} + w_{\text{track}} \times \left(m_j^{\text{track}} \frac{p_T^{\text{calo}}}{p_T^{\text{track}}} \right) \]

- \(w_{\text{calo}} \) and \(w_{\text{track}} \) are inversely proportional to the square of the resolution of each mass term and are optimized to minimize the combined jet mass resolution.

- Resolution is improved especially at high jet \(p_T \), due to the coarser angular resolution of the calorimeter.

- For Higgs boson reconstruction in the bb decay channel, the mass resolution can also be improved by correcting for semi-leptonic decays of the b-hadrons.
b-tagging

- Crucial for reconstructing Higgs to $b\bar{b}$-bar decays but also for rejecting top backgrounds.
- A b-hadron decay in the detector provides a measurable displaced secondary vertex.
- A multivariate tagging algorithm combines information from vertexing and impact parameter tagging algorithms to a set of tracks associated to a jet/track-jet, in order to identify jets containing b-hadrons.
VV fully hadronic: VV → JJ

ATLAS Preliminary

\[\sqrt{s} = 13 \text{ TeV} \]

\[\sigma (pp \rightarrow V' \rightarrow WW+WZ) [fb] \]

- Phys. Lett. B 777 (2018) 91 (Scaled to 79.8 fb⁻¹)
- Current Result (79.8 fb⁻¹)
ZV → llqq, vvqq semi-leptonic

ATLAS

\[\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \]

- Data
 - Z + jets
 - Top Quarks
 - W + jets
 - SM Diboson
 - Total Uncertainty

Events

- **Data/Postfit**
 - VBF cat. high-purity
 - VBF cat. low-purity
 - ggF cat. high-purity
 - ggF cat. low-purity
 - ggF cat. b-tagged
 - ggF cat. untagged

- **Postfit/Prefit**
 - from qq SideBand
 - from eu selection