tW production in run 2 of the LHC with ATLAS

Douglas Davis (Duke University), Carl Suster (The University of Sydney)

Two measurements of tW production in the dilepton channel are presented using 13 TeV ATLAS pp collisions.

Single top production is a weak process (cf. top pair)

- Virtual/real intermediate W (s- or t-channel) or tW
- Sensitive to new physics affecting the tWb vertex, |V_{tb}|

Background separation

- Boosted decision trees (BDTs) trained to separate tW signal from t\bar{t} background
- A cut on the response is used to isolate a tW-enriched sample
- S/B ~0.5 after BDT cut

Correcting for detector effects

- Background-subtracted data are unfolded to particle level
- Leptons are dressed by nearby photons
- Remaining particles clustered into jets (b-tagging via ghost matching)

Results

- First comparison of ATLAS data to full WbWb theoretical predictions
- Single variable differential analysis in maximally interfering kinematic region

tWb interference analysis

- First differential measurements of tW production at ATLAS
- Event selection
- Background separation
- Correcting for detector effects
- Results

Differential tW

- First differential measurements of tW production at ATLAS

tWb interference analysis

- Event selection
- Control regions for major backgrounds
- Exploiting tW kinematics

Background separation

- Boosted decision trees (BDTs) trained to separate tW signal from t\bar{t} background
- A cut on the response is used to isolate a tW-enriched sample
- S/B ~0.5 after BDT cut

Control regions for major backgrounds

- Use the Z-mass for same flavour leptons pairs as a Z+jets control region
- Use region with extra b-tagged jet to control for top-pair plus heavy flavour

Exploiting tW kinematics

- 2 ways to pair objects:
 - m(b,\bar{b}) = A
 - m(b,\bar{b}) = a

Results

- First comparison of ATLAS data to full WbWb theoretical predictions