EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Status Report to the ISOLDE and Neutron Time-of-Flight Committee

IS619: Effects of the neutron halo in 15C scattering at energies around the Coulomb barrier

Submitted: 10-October-2018

I. Martel1 and O. Tengblad2 for the IS619 Collaboration

1 University of Huelva, Avda Fuerzas Armadas sn, 21971 Huelva, Spain.
2 Instituto de Estructura de La Materia – CSIC. Serrano 113 bis, ES-28006 Madrid, Spain.

Abstract

The objective of the experiment is to study the low-energy dynamics of 15C by measuring the angular distribution of the elastic scattering and 14C production cross sections at Coulomb barrier energies. The carbon isotope 15C is a rather unique nucleus as its ground state exhibits the only known pure S-wave halo configuration. This would be the first dynamical study carried out so far for the halo nucleus 15C at low collision energies, which should bring information on the complicated coupling between elastic, neutron transfer and breakup channels, and the role of the continuum.

1. Motivation, experimental setup/technique

Motivation. The neutron-rich carbon isotope 15C (t=2.45s) is a weakly bound system. The energy required for one-neutron removal S_{1n}=1218 keV is much smaller than for two-neutron removal S_{2n}=9395 keV [1, 2]. Experiments performed at high energies [3] suggest the formation of a halo, being thus the only known case of an almost “pure” $2s_{1/2}$ single-neutron halo ground state [4, 5].

Despite the great interest, the dynamics of 15C at low collision energies is practically unknown. Important dynamical effects due to the halo have been theoretically predicted to appear in the scattering with heavy targets at Coulomb barrier energies [6]. However, there is no scattering data for testing the validity of the results and new experiments are needed to investigate the relevant reaction processes.
Experimental setup. The measurements were carried-out with the particle detector GLORIA [7], a silicon array composed of six DSSSD telescopes and a tilted target system (Fig. 1). The detector allows to measure the angular distribution of elastic and reaction fragments in a continuous angular region from 15° - 165° (Lab), resolving mass and charge up to nitrogen. A total number of 30 shifts of post-accelerated 15C were allocated for this experiment at a beam energy of $E = 65$ MeV.

2. Status Report

The experiment was carried out at the XT03 beam line of HIE-ISOLDE, where the GLORIA detector system was set-up in the SEC scattering chamber. Two high-purity 208Pb targets (>98%) of 1.5 mg/cm2 (thin target) and 2.1 mg/cm2 (thick target) were used for the measurements. The 15C beam was produced using a CaO$_2$ primary target on a hot-cathode plasma source. In order to maximize the 15C$^{5+}$ yield the mass-to-charge ratio was set to $A/Q = 3$.

![Figure 1. GLORIA silicon array.](image)

![Figure 2. ΔE vs E plot for the forward telescope “A” of the GLORIA array. The areas corresponding to the elastic channels of 15C and 15N isotopes have been identified. See text for discussion.](image)
The observed beam contaminants were N and O, which are present in the residual gas of the accelerator system. Their relative yields were reduced by using a carbon stripper of 75 μg/cm² thickness, and the energy of the 15C beam increased to 4.37 MeV/u to compensate for the corresponding energy loss (~ 300 keV); the estimated beam energy with the foil was 4.35 MeV/u.

The detector system GLORIA can easily identify the light beam contaminants and/or reaction products owing to the thin ΔE-stage (40 μm) of the telescopes. A typical raw spectrum of the forward telescope “A” is shown in Fig. 2. It contains ΔE - E coincidence data of a total of 16x16 pixels and covers a wide angular region from 15° to 65° (Lab). Despite the large kinematical spread, the elastic scattering of 15C, 15N and the region associated to interstrip effects (cross-talking) are clearly separated. Using this spectrum we obtained an intensity of the 15N component of 6×10^4 pps and an average ratio carbon/nitrogen of ~ 0.03, which is consistent with a 15C beam intensity of $I = 1.8 \times 10^3$ pps at the reaction target.

As the Coulomb barrier for the scattering of nitrogen and oxygen with a 208Pb target is much higher than the nominal 65 MeV beam energy, only pure Rutherford scattering is expected with no contribution to other reaction channels. The presence of light beam contaminants was very useful for tuning the beam through the detector system and for monitoring the data acquisition process. On the other hand, the Rutherford scattering of 15N will be used for cross-checking the scattering angles and the normalization of the 15C elastic cross section. The data is presently under analysis.

References

Theses
The data is being analysed by the PhD students J.D. Ovejas (Supervisor: O. Tengblad) and A. Knyazev (Supervisor: J. Cederkall).

Publications
A publication [J.D. Ovejas et al.] is in preparation from a poster presentation at the International Scientific Meeting “La Rábida: Basic concepts in Nuclear Physics: theory, experiments and applications”. La Rábida (Spain) 18th-22th June 2018.