Measurement of the tau lepton reconstruction and identification performance in the ATLAS experiment using pp collisions at $\sqrt{s}=13$ TeV

Michael Hübner (huebner@physik.uni-bonn.de)
Rheinische Friedrich-Wilhelms-Universität Bonn, Germany, on behalf of the ATLAS Collaboration

Tau reconstruction & motivation

The tau lepton offers access to a variety of physics analyses, ranging from BSM physics (e.g. SUSY searches) to SM analyses (e.g. Higgs coupling measurement). To be able to perform such measurements, a sophisticated reconstruction and calibration of the tau lepton was developed. Several algorithms target different aspects of hadronically decaying taus (τ_h) and when combined deliver a precise picture.

Common measurement strategy

- **Concept:** select well-known Standard Model process $Z \rightarrow \tau\tau$
- **Tag** leptonically decaying tau into muon (trigger the muon), probe hadronically decaying tau
- **Use** common event selection to select $Z \rightarrow \tau\tau$ events

QCD CR

- **Estimation of QCD-induced multijet background (ABCD method):**
 - Obtain multijet template from same sign events
 - Scale template with normalisation factor calculated in QCD CRs

- **Estimation of W+jets:**
 - Shape/Norm taken from data – simulation in W CR
 - Normalisation transfer factors calculated from simulation in W CR and signal region

Signal and other backgrounds from simulation

Goal: measure scale factors to account for any remaining differences between data and simulation after tau energy calibration

Common measurement strategy

- **Goal:** apply tau trigger on probe tau in signal region and extract trigger efficiency (similar procedure as the tau identification measurement)
 - $N_{\tau_h} = R_{\text{pT}} \cdot N_{\text{tracks}} \cdot 10^{\text{bkg}} / 2 \cdot 10^{\text{trig}}$
 - $N_{\tau_h} = R_{\text{pT}} \cdot N_{\text{tracks}} \cdot 10^{\text{bkg}} / 2 \cdot 10^{\text{trig}}$
 - Extend p_T range by using $Z \rightarrow \tau\tau$ for lower p_T values, and τ events for high p_T

Trigger efficiency

- **Concept:** select common Standard Model process $Z \rightarrow \tau\tau$
- **Tag** leptonic tau decay into muon (trigger the muon), probe hadronically decaying tau
- **Use** common event selection to select $Z \rightarrow \tau\tau$ events

QCD CR SS

- **Estimation of QCD-induced multijet background (ABCD method):**
 - Obtain multijet template from same sign events
 - Scale template with normalisation factor calculated in QCD CRs

- **Estimation of W+jets:**
 - Shape/Norm taken from data – simulation in W CR
 - Normalisation transfer factors calculated from simulation in W CR and signal region

Signal and other backgrounds from simulation

Goal: derive scale factors accounting for differences between data and simulation in the efficiency of a candidate to pass a certain level of identification

Scale factor definition:

QCD

- **Tau energy scale**
 - **Goal:** measure scale factors to account for any remaining differences between data and simulation after tau energy calibration
 - **Fit** variable sensitive to TES shift: ΔE_T
 - **TES shift parametrisation:** $E_T \rightarrow (1 + \alpha)E_T$
 - **Fit** by minimizing

 $\chi^2(\alpha, \beta) = \sum \left(\frac{N_{\text{obs}} - (N_{\text{pred}}(\alpha) - N_{\text{disc}})}{\sqrt{N_{\text{disc}}}} \right)^2$ $+ \beta \left(\frac{\Delta N_{\text{pred}}(\alpha)}{} \right)^2 + \left(\frac{\Delta N_{\text{disc}}}{\sqrt{N_{\text{disc}}}} \right)^2$

Overall TES uncertainties

Overall identification unc. (2016 data)

References

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TauPublicResults