Lepton Flavour Universality tests at LHCb

Pavel Krokovny on behalf of the LHCb Collaboration
Budker INP & Novosibirsk University

Outline:
• Introduction
• LHCb detector & data taking
• $b \rightarrow c \ell \nu$
• $b \rightarrow s \ell^+ \ell^-$
• Summary

22-26 October ICPPA MEPhI, Moscow
Lepton Flavour Universality

In the Standard Model (SM) quarks and leptons exist in 3 generations of 2 members each. SM assumes Lepton Flavour Universality (LFU):

- the equal gauge couplings for all 3 generations
- difference is only due to mass

LFU is established in the decay of light mesons, e.g. $\pi \to \ell\nu$, $K \to \pi\ell\ell$, $J/\psi \to \ell\ell$

LEP measurements of decays $W \to \ell\nu$ and $Z \to \ell\ell$ confirm LU, however there is some tension in $W \to \tau\nu$

Some SM extensions include particles that can cause LUV and/or LFV (e.g. LQ, Z')

Processes with 3rd generation of quarks and leptons (B and τ) are prominent for LFU violation search:

- Lower experimental constraints
- Stronger couplings to 3rd generation predicted by BSM theories foreseeing LFU violation
LFU in b decays

Tree-level decays $b \to c\ell\nu$:

- abundant
- very well known in the SM
- BSM theories predict enhanced coupling with 3rd generation → interested in testing τ against μ / e

Loop-level decays $b \to s\ell^+\ell^-$:

- forbidden at tree-level in SM
- sensitive to NP contributions in loops
LHCb experiment
LHCb performance

- Momentum resolution: 0.4 – 0.6% at 5 – 100 GeV
- Muon ID efficiency: 97 % with 1-3 % π → μ mis-ID probability
- Electron ID efficiency: 90% with 4% h → e mis-ID probability
- Kaon ID efficiency: 95% with 5 % π → K mis-ID probability

Acceptance: 2 < η < 5

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

- 2018 (6.5 TeV): 1.80 /fb
- 2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb
- 2016 (6.5 TeV): 1.67 /fb
- 2015 (6.5 TeV): 0.33 /fb
- 2012 (4.0 TeV): 2.08 /fb
- 2011 (3.5 TeV): 1.11 /fb
- 2010 (3.5 TeV): 0.04 /fb

1) Commun. 208 35 -42
LFU in semileptonic b decays

Measurement of ratios of branching fractions allows to

- cancel $|V_{cb}|$ dependence
- partially cancel out model uncertainties
- reduce experimental systematic uncertainties
SM prediction of R_{D^*}

\[R_{D^*} \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu)} \overset{\text{SM}}{=} 0.258 \pm 0.005 \]

HFLAV average

→ Hadronic uncertainties cancel to large extent in the ratio

→ Difference from unity due to different lepton masses

• First deviation from SM was observed by BaBar and Belle

• LHCb performed two independent measurements using
 – $\tau^- \to \mu^- \bar{\nu}_\tau \bar{\nu}_\mu$ [PRL 115 (2015) 111803]
 – $\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$ [PRD 97 (2018) 072013]
\(R_{D^*} \) in muonic \(\tau \) decays

- \(\tau \) reconstructed by \(\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu \)
- Both channels have the same final state (\(K\pi\pi\mu \))

- Separation using three kinematic parameters:
 - \(E^*_\mu = E_\mu \) in \(\bar{B}^0 \) rest frame
 - \(m^2_{\text{miss}} = (p_{B0} - p_{D^*} - p_{\mu})^2 \)
 - \(q^2 = (p_{B0} - p_{D^*})^2 \)

- Approximate \(p_{B0} \) using
 - \(\bar{B}^0 \) flight direction
 - \((p_{B0})_z = m_B / m_{\text{reco}} (p_{\text{reco}})_z \)
R_{D^*} in muonic τ decays

- Yields are extracted with a 3D binned ML fit in E_μ^*, m_{miss}^2, q^2
- Templates for the signal, normalization and backgrounds are obtained on MC and checked against control samples

$R_{D^*} = 0.336 \pm 0.027 \text{ (stat)} \pm 0.030 \text{ (syst)}$ 2σ above SM

- Main background: Partially reconstructed and mis-ID decays
- Main systematic: Size of the simulated sample

R_{D^*} in hadronic τ decays

τ reconstructed by $\tau^- \rightarrow \pi^-\pi^-\pi^+ \nu_\tau$ independent from R_{D^*} muonic

$$R_{D^*} = \frac{\mathcal{B}(B^0 \rightarrow D^{*-\tau^+\nu_\tau})}{\mathcal{B}(B^0 \rightarrow D^{*-3\pi})} \cdot \frac{\mathcal{B}(B^0 \rightarrow D^{*-\mu^+\nu_\mu})}{\mathcal{B}(B^0 \rightarrow D^{*-\mu^+\nu_\mu})}$$

measured ratio $\mathcal{K}(D^{*-})$

external inputs

~4% precision (BABAR, Belle, LHCb)

~2% precision, HFLAV

- Partial cancellation of experimental systematic uncertainties
- Main background:
 - $B^0 \rightarrow D^*\pi\pi\pi X$, suppressed with τ decay time, t_τ
 - $B \rightarrow DD_{(s)}X$, suppressed with BDT
R_{D^*} in hadronic τ decays

- Yields are extracted by a binned ML fit on q^2, BDT and t_τ

- $R_{D^*} = 0.291 \pm 0.019 \text{ (stat)} \pm 0.026 \text{ (syst)} \pm 0.013 \text{ (ext)}$

 1σ above SM

- Main systematic: Size of the simulated sample

- LHCb average: $R_{D^*} = 0.310 \pm 0.016 \text{ (stat)} \pm 0.022 \text{ (syst)}$

 2.2σ above SM

Measurements of R_D and R_{D^*} are consistent with each other.
Combined result is 3.8σ above SM prediction.
SM prediction of $R_{J/\psi}$

Test of LFU in $b \to c \ell \nu$ decays with a different spectator quark using large B^+_c sample available at LHCb

$R_{J/\psi} \equiv \frac{\mathcal{B}(B^+_c \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B^+_c \to J/\psi \mu^+ \nu_\mu)} \overset{\text{SM}}{\in} [0.25, 0.28]

Lattice calculation is in progress
$R_{J/\psi}$ results

τ reconstructed by $\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu$

Analysis strategy as in $R_{D^*} + t_\tau$ as 4th discriminating variable

Main backgrounds: $B \rightarrow J/\psi + \text{mis-ID hadron}$

Systematic: MC sample, $B_c^+ \rightarrow J/\psi$ form factors

$R_{J/\psi} = 0.71 \pm 0.17(\text{stat}) \pm 0.18(\text{syst})$

First evidence (3σ) of $B_c^+ \rightarrow J/\psi \tau^+ \nu_\tau$
LFU tests in $b \to s \ell^+ \ell^-$

$b \to s \ell^+ \ell^-$ are FCNC processes that can only occur at loop-level in SM.

$$R_H \equiv \frac{\mathcal{B}(B \to H \mu^+ \mu^-)}{\mathcal{B}(B \to H e^+ e^-)} \overset{\text{SM}}{=} 1 \pm \mathcal{O}(10^{-3}) \pm \mathcal{O}(10^{-2}) \quad \text{[EPJC76(2016)8,440]}
$$

- Neglect m_ℓ
- QED effects

Use double ratio to reduce systematic effects:

$$R_H \equiv \frac{\mathcal{B}(B \to K \mu^+ \mu^-)}{\mathcal{B}(B \to K (J/\psi \to \mu^+ \mu^-))} \cdot \frac{\mathcal{B}(B \to K (J/\psi \to e^+ e^-))}{\mathcal{B}(B \to K e^+ e^-)}$$
Measurement of R_{K^*}

$LHCb$

$m(K^+\pi^-\mu^+\mu^-)$ [MeV/c2]

q^2 [GeV2/c4]

$LHCb$

$m(K^+\pi^-e^+e^-)$ [MeV/c2]

q^2 [GeV2/c4]

$LHCb$

$B^0\rightarrow K^{*0}\mu^+\mu^-$

Combinatorial

$1.1 < q^2 < 6.0$ [GeV2/c4]

$LHCb$

$B^0\rightarrow K^{*0}e^+e^-$

$B\rightarrow Xe^+e^-$

$B^0\rightarrow K^{*0}J/\psi$

$1.1 < q^2 < 6.0$ [GeV2/c4]

Pulls Candidates per 34 MeV/c2

Pulls Candidates per 10 MeV/c2
R_{K^*} results

\[
R_{K^*} = \begin{cases}
0.66^{+0.11}_{-0.07}\text{(stat)} \pm 0.03\text{(syst)}, & \text{at low } q^2 (\sim 2.2\sigma \text{ below SM}) \\
0.69^{+0.11}_{-0.07}\text{(stat)} \pm 0.05\text{(syst)}, & \text{at central } q^2 (\sim 2.4\sigma \text{ below SM})
\end{cases}
\]

- Most precise measurement to date
- Compatible with BaBar and Belle
- Statistically limited by the electron sample
R_K results

$LHCb$ [PRL 113 (2014) 151601]

$Babbar$ [PRD 86 (2012) 032012]

$Belle$ [PRL 103 (2009) 171801]

$LHCb$ graph shows R_K results with data points from LHCb, Babar, and Belle collaborations.

$R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$ in central q^2 region [1,6]GeV$^2/c^4$

$R_K = 0.745^{+0.090}_{-0.074} \text{(stat)} \pm 0.036 \text{(syst)} \sim 2.6\sigma$ below SM
Combination of $R_{K^{(*)}}$, R_{K} and [PRL 118 (2017) 111801] is $\sim4\sigma$ from SM

- $b \to s\mu^+\mu^-$ BR and angular obs. are in agreement with LFU tests
- Considered together the tension with SM further increases
Prospects for LFU tests at LHCb

LHCb aims to perform complementary LFU tests:

• $b \to c\ell\nu$ transitions:
 - R_{Λ^*}, R_{D_s}, $R_{D_s^*}$ and others

• $b \to u\ell\nu$ transitions:
 - $R_{p\bar{p}} = \frac{B(B^+ \to p\bar{p}\tau\nu)}{B(B^+ \to p\bar{p}\mu\nu)}$ and others

• $b \to s\ell\ell$ transitions:
 - R_{K_s}, $R_{K^{*+}}$, $R_{K^{*0}}$, R_{pK^*}, R_φ, R_Λ, direct fit to $\Delta C_9^{\mu,e}$ and others

⇒ Update of R_K, R_{K^*}, R_{D^*} and $R_{J/\psi}$ with Run 2 data is currently on-going. 4 times more statistics: expected improvement on both statistical and systematic uncertainties
Tests of LFU in heavy flavour physics present a tension with the SM predictions:

- **3.4 σ** from angular distributions of $B^0 \rightarrow K^{*0} \mu^+\mu^-$
- Measurements of ratios of branching fractions in both $b \rightarrow c\ell\nu$ and $b \rightarrow s\ell^+\ell^-$
 - **3.8σ** tension in R_D and R_{D^*} when combining BaBar, Belle and LHCb
 - **2.5σ** below SM prediction in $R_{K(*)}$ at central q^2

Anomalies in both $b \rightarrow c\ell\nu$ and $b \rightarrow s\ell^+\ell^-$ decays could be described with same New Physics models

LHCb continue testing the LFU hypothesis. Please stay tuned!
Backup
Angular analysis of $B^0 \rightarrow K^{*0}\mu^+\mu^-$

NP models which explain the observed discrepancies in the measurement of $R(K(*))$ w.r.t SM predictions, foresee anomalous behaviors also in the angular distribution of the decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$.

Decay amplitude can be described using q^2 and three angles: θ_ℓ, θ_K, ϕ:
Decay amplitude of $B^0 \to K^{*0} \mu^+ \mu^-$

$$
\frac{d^4 (\Gamma + \bar{\Gamma})}{d \Omega \, dq^2} = \frac{9}{32 \pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_k + F_L \cos^2 \theta_k
+ \frac{1}{4} (1 - F_L) \sin^2 \theta_k \cos 2\theta_\ell - F_L \cos^2 \theta_k \cos 2\theta_\ell
+ S_3 \sin^2 \theta_k \sin^2 \theta_\ell \cos 2\phi + S_4 \sin 2\theta_k \sin 2\theta_\ell \cos \phi
+ S_5 \sin 2\theta_k \sin \theta_\ell \cos \phi + \frac{4}{3} A_{FB} \sin^2 \theta_k \cos \theta_\ell
+ S_7 \sin 2\theta_k \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_k \sin 2\theta_\ell \sin \phi
+ S_9 \sin^2 \theta_k \sin^2 \theta_\ell \sin 2\phi \right],
$$
The P'_5 anomaly

- Angular observable:
 \[P'_5 \equiv \frac{S_5}{\sqrt{F_L(1 - F_L)}} \]

- LHCb measurement differs by 3.4σ from the SM prediction

- Can be explained by
 - SM charm-loop effects (cannot explain tension in R_{K^*})
 - New Physics

JHEP 02 (2016) 104
ATLAS measurement differs by 2.7σ from the SM prediction.

CMS results are consistent with SM prediction and other measurements.
Measurement of R_{D^*}

B factories

\[e^+e^- \rightarrow \Upsilon(4S) \rightarrow B^+B^-(B^0\bar{B}^0) \]

- Reconstruction of other B
- Clean signal but low efficiency

LHCb

- Large boost, flight direction determined by PV & SV
- Huge B production
Main systematic uncertainties due to:

- Size of simulated sample
- Shape of the background \(B \to D^* D_s^+ X \)
- \(D_{(s)}^+ \to \pi^+ \pi^- \pi^+ X \) decay mode. BESII future measurement will reduce it. Improvement as well of the upgraded ECAL
- Branching fraction of normalisation mode \(B^0 \to D^* \pi^+ \pi^- \pi^+ \) known with \(\sim 4\% \) precision. Belle II can measure it precisely
R_{D^*} in muonic channels

MC truth

$B \to D^* \mu \nu$

$B \to D^* \tau \nu$

Reconstructed