Studies of beauty suppression via nonprompt D⁰ mesons in PbPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

The CMS Collaboration

Abstract

The transverse momentum spectra of D⁰ mesons from b hadron decays are measured at midrapidity ($|y| < 1$) in pp and PbPb collisions at a nucleon–nucleon center of mass energy of 5.02 TeV with the CMS detector at the LHC. The D⁰ mesons from b hadron decays are distinguished from prompt D⁰ mesons by their decay topologies. In PbPb collisions, the $B \rightarrow D^0$ yield is found to be suppressed in the measured p_T range from 2 to 100 GeV/c as compared to pp collisions. The suppression is weaker than that of prompt D⁰ mesons and charged hadrons for p_T around 10 GeV/c. While theoretical calculations incorporating partonic energy loss in the quark-gluon plasma can successfully describe the measured $B \rightarrow D^0$ suppression at higher p_T, the data show an indication of larger suppression than the model predictions in the range of $2 < p_T < 5$ GeV/c.

Quantum chromodynamics (QCD) predicts the existence of a quark-gluon plasma (QGP) phase, consisting of deconfined quarks and gluons, at extremely high temperatures and/or densities [1–3]. Experiments at the BNL RHIC and the CERN LHC indicate that a strongly coupled QGP is created in relativistic heavy ion collisions at nucleon–nucleon center-of-mass energies $\sqrt{s_{NN}}$ from 200 GeV to several TeV [4–8]. Heavy quarks (charm and beauty) produced in heavy ion collisions are valuable probes for studying the properties of this deconfined medium. They are mostly produced in primary hard QCD scatterings at an early stage of the collision. During their propagation through the QGP, heavy quarks lose energy via radiative and collisional interactions with the medium constituents, with the 2 processes dominating at high and low transverse momentum (p_T), respectively. Parton energy loss can be studied using the nuclear modification factor (R_{AA}), which is defined as the ratio of the particle yield in nucleus–nucleus (AA) to that in proton–proton (pp) collisions, normalized by the number of binary nucleon–nucleon collisions (N_{coll}) [9]. Precise measurements of R_{AA} for particles containing light, charm, and beauty quarks over a wide p_T range can test the predicted flavor (parton mass) and energy dependence of the parton energy loss in the QGP [10]. This can provide both important tests of QCD at extreme densities and temperatures, and constraints on theoretical models describing the system evolution in heavy ion collisions.

Charm suppression in heavy ion collisions was reported by RHIC and LHC experiments [11–16]. For beauty production, the CMS Collaboration measured R_{AA} for nonprompt J/ψ mesons (coming from decays of b hadrons) and for fully reconstructed B^\pm mesons [17–19]. A suppression by a factor of about two was observed in both channels for $p_T > 6$ GeV/c at mid-rapidity. At the same time, the R_{AA} of nonprompt J/ψ mesons in the p_T range of 6.5–30 GeV/c was found to be larger than the R_{AA} of prompt D mesons in the 8–16 GeV/c p_T region for central events, which is in line with a mass ordering of quark energy loss [10]. An indication of less suppression of nonprompt J/ψ mesons is seen at forward rapidity (1.8 < $|y|$ < 2.4), at low p_T, down to 3 GeV/c. Extending measurements of charm and beauty suppression to a broader p_T coverage should provide improved discrimination between the radiative and collisional parton energy loss mechanisms, leading to better constraints on theoretical predictions.

In this letter, we report a study of beauty production and in-medium energy loss performed by measuring nonprompt D^0 p_T spectra in pp and 0%–100% centrality (i.e., the degree of overlap of the two colliding nuclei) PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the CMS detector. The measurement is done in the rapidity region $|y| < 1$, in a wide p_T range from 2 to 100 GeV/c. The D^0 and \bar{D}^0 mesons, whose yields are merged in this analysis, are reconstructed via the hadronic decay channel $D^0 \rightarrow K^- \pi^+$ that has a branching fraction of 3.93% [20]. The combined branching fractions of B mesons $\rightarrow D^0X/\bar{D}^0X$ and the following $D^0 \rightarrow K^- \pi^+$ are significantly higher than those for previous measurements via nonprompt J/ψ mesons and fully reconstructed B^\pm mesons.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. The silicon tracker measures charged particles within the pseudorapidity range $|\eta| < 2.5$. For nonisolated particles of 1 < p_T < 10 GeV/c and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) μm in the transverse (longitudinal) impact parameter [21]. A detailed description of the CMS experiment can be found in Ref. [22].

This analysis is performed using pp and PbPb data collected in 2015 at $\sqrt{s_{NN}} = 5.02$ TeV. For D^0 p_T less than 20 GeV/c, minimum-bias samples corresponding to about 2.67 billion pp (294
million PbPb) collisions are used. For D⁰ p_T above 20 GeV/c, we use samples from dedicated D⁰ high-level trigger (HLT) algorithms [16], corresponding to integrated luminosities of 27.4 pb⁻¹ [23] and 530 fb⁻¹ for pp and PbPb collisions, respectively. The same event selection as in Refs. [16, 24, 25] is used to reject instrumental background processes (beam–gas collisions, beam scraping events and ultra-peripheral non-hadronic collisions).

Monte Carlo (MC) simulated events are used to evaluate detector acceptance, reconstruction and selection efficiency for D⁰, and to obtain geometrical distributions for prompt and non-prompt D⁰ meson decay vertices relative to the primary vertex (PV, the reconstructed collision point). The MC samples are produced by generating pp collisions containing a D⁰ meson with PYTHIA 8.122 [26] tune CUETP8M1 [27]. The decay kinematics of the heavy flavor hadrons are simulated with EVTGEN 1.3.0 [28]. Each pp event is then overlaid with a PbPb collision event generated with HYDJET 1.8 [29]. The centrality distribution in real data is approximated by weighting the HYDJET event sample by the number of inelastic nucleon-nucleon collisions. The generated B meson p_T distributions are also weighted such that they reproduce the measured nonprompt D⁰ spectra in this analysis. The detector response is simulated with GEANT4 [30].

The D⁰ candidates are reconstructed by combining pairs of oppositely charged tracks. Each track is required to pass a high purity selection based on a multi-variate analysis of track quality variables [31]. Tracks are required to have |η| < 1.5 and p_T larger than 1 GeV/c for the pp and PbPb minimum-bias data, and 2 and 8.5 GeV/c for pp and PbPb D⁰-triggered samples, respectively. For each pair of selected tracks, two D⁰ candidates are created by assuming that one of the particles has the pion mass and the other has the kaon mass, and vice-versa. The D⁰ candidates are required to have |y| < 1, where the track resolution is better. In order to reduce the combinatorial background and prompt D⁰ contribution, the D⁰ candidates are selected based on several geometrical criteria: a minimum probability that the two tracks come from a common decay vertex, a minimum distance between the decay vertex and the PV divided by its uncertainty, and minimum distances of closest approach (DCA) to the PV for the pion and kaon tracks divided by their uncertainties. The selection is optimized using simulated signal samples complemented by background events from mass sidebands in the data. Dedicated optimizations are performed for different p_T ranges and for pp and PbPb collisions, in order to maximize the statistical significance of the B → D⁰ (i.e., D⁰ mesons from b hadron decays) yield.

The B → D⁰ decays are distinguished from prompt D⁰ mesons by fitting the distribution of DCA between the D⁰ path and the PV. The signal D⁰ DCA distribution, including both the prompt and nonprompt components, is extracted by two methods. For p_T bins in which there is abundant background (D⁰ p_T < 20 GeV/c for PbPb), the D⁰ meson yield in each D⁰ DCA bin is obtained from an invariant mass fit with three components: a double-Gaussian function describing the signal, a broad Gaussian function describing K–π swapped pairs, and a third-order polynomial component for the combinatorial background. Figure 1a shows an example of a three-component invariant mass fit for a selected D⁰ DCA and p_T bin. For the pp data and for D⁰ candidates with p_T > 20 GeV/c from PbPb events, for which the background is low, a sideband subtraction method is used to obtain the signal D⁰ DCA distribution. Figure 1b shows the DCA distributions for D⁰ candidates in the signal invariant mass region (|m_{rec} - m_{D0}| < 0.025 GeV/c²) and for candidates in the sidebands (0.05 < |m_{rec} - m_{D0}| < 0.1 GeV/c²). The latter is scaled by the mass range ratio of 0.5, in order to estimate the background yield in the narrower signal region. Here m_{rec} is the reconstructed K–π invariant mass and m_{D0} is the nominal mass of the D⁰ meson, 1.8648 GeV/c² [20]. The signal D⁰ DCA distribution is calculated as the difference of the D⁰ DCA distributions in the signal region and the sidebands.
Figure 1: a) Example of a three-component invariant mass fit of a D⁰ DCA bin for p_T of 6–7 GeV/c in PbPb collisions; b) DCA distributions for D⁰ candidates in the signal invariant mass region and in the sidebands (scaled by the mass range ratio of 0.5) for D⁰ p_T of 6–7 GeV/c in pp collisions; c) Signal DCA distribution obtained with the invariant mass fit for each DCA bin, and a prompt+nonprompt two-component fit to it, for D⁰ p_T of 6–7 GeV/c in PbPb collisions; d) Signal DCA distribution obtained with the sideband subtraction, and a prompt+nonprompt two-component fit to it, for D⁰ p_T of 6–7 GeV/c in pp collisions.

In order to obtain the B → D⁰ yield, a two-component fit to the signal D⁰ DCA distribution is carried out using prompt and nonprompt D⁰ DCA templates obtained from MC simulations, as shown in Fig. 1c and 1d, for PbPb and pp, respectively. The prompt D⁰ mesons have a narrow DCA distribution near zero, with the width purely resulting from the detector resolution, while the nonprompt D⁰ DCA distribution is much wider because of the kink between the b hadron and D⁰ meson directions. This two-component fit is sensitive to the modeling of the D⁰ DCA distributions in the simulation. To assess systematic effects on the two-component fit arising from potential differences between the resolution in data and simulation, the widths of the simulated DCA distributions are varied by a floating scale factor. The best simulated DCA width scale factor to match the data is determined by minimizing the χ² of the two-component fit. It is found to be in the range of 1.0 ± 0.1 for all p_T bins, indicating a good data-to-simulation consistency.

The B → D⁰ differential cross section with |y| < 1 in pp collisions is calculated with the following equation:

$$\frac{d\sigma_{pp}^{B \rightarrow D^0}}{dp_T} \bigg|_{|y|<1} = \frac{1}{2\mathcal{L}\Delta p_T B} \frac{N_{pp}^{B \rightarrow D^0 + D^0}}{ae} \bigg|_{|y|<1}. \quad (1)$$

Here N_{pp}^{B \rightarrow D^0 + D^0} are the nonprompt D⁰ and D⁰ meson yields extracted in each p_T interval; L is the integrated luminosity for the corresponding trigger; Δp_T is the width of the p_T interval; B is the decay branching fraction; and ae represents the product of acceptance and efficiency. The factor 1/2 accounts for the fact that the yields were measured for D⁰ plus D⁰, but the cross section is for either D⁰ or D⁰ production.
The $B \to D^0$ yield with $|y| < 1$ in PbPb collisions is calculated similarly, and normalized by the nuclear overlap function $T_{AA} = N_{\text{coll}}/\sigma_{\text{inelastic}} = 5.61 \text{mb}^{-1}$ [24] calculated with the Glauber model [9], to facilitate the comparison with the pp spectrum, as:

$$\frac{1}{T_{AA}} \frac{dN_{B \to D^0}^{\text{PbPb}}}{dp_T} \bigg|_{|y| < 1} = \frac{1}{T_{AA}} \frac{1}{2N_{\text{events}} \Delta p_T} \frac{N_{B \to D^0}^{\text{PbPb}}}{\alpha e} \bigg|_{|y| < 1},$$

(2)

where the number of sampled inelastic collision events N_{events} replaces the integrated luminosity L.

The nuclear modification factor is defined as

$$R_{AA} = \frac{1}{T_{AA}} \frac{dN_{B \to D^0}^{\text{PbPb}}}{dp_T} / \frac{d\sigma_{B \to D^0}^{\text{pp}}}{dp_T}.$$

(3)

The global systematic uncertainty (common to all points) of the $B \to D^0$ p_T spectrum in pp collisions (2.5%) is the sum in quadrature of the uncertainties in the integrated luminosity (2.3% [23]) and in the $D^0 \to K^-\pi^+$ branching fraction (1% [20]). The global uncertainty in the PbPb measurement (+4.1%, −3.6%) includes the uncertainties in the number of sampled PbPb inelastic collision events (2%), in the branching fraction (1%), and in T_{AA} (+2.8%, −3.4% [24]).

In the calculation of R_{AA}, the uncertainty in the branching fraction cancels out. The other uncertainties are summed in quadrature, amounting to a total global systematic uncertainty in the R_{AA} of +4.6%, −4.1%.

The following systematic uncertainties are evaluated separately in different p_T ranges. The systematic uncertainty due to the signal extraction from the invariant mass fit (3.2–5.3%) is evaluated by varying the function used to fit the background, and by comparing the default double-Gaussian signal yield with that obtained with a different method, in which the integral of a third-order polynomial function describing the background and the $K−\pi$ swapped pairs in the signal invariant mass region is subtracted from the number of candidate counts. The uncertainty due to the signal extraction with the sideband subtraction method (1.4–8.6%) is obtained by comparing the D^0 meson yield from the sideband method with the yield from the invariant mass fit, both obtained within the D^0 DCA range where the nonprompt D^0 component dominates. The systematic uncertainty associated with the separation of prompt D^0 mesons and D^0 mesons from b hadron decays (4.2–30.4%) comes from two sources. The first part, which is due to the data–simulation difference in the D^0 DCA shapes, is estimated by comparing the default $B \to D^0$ yields (from the two-component fit using MC DCA templates with varied widths to match the data) with that obtained using the original MC DCA templates without the width variation. The second part, which is due to statistical uncertainty in the simulated samples, is obtained by smearing simulated D^0 DCA distributions according to the statistical uncertainties in each individual bin, and repeating the two-component fit 1000 times. The systematic uncertainty in the tracking efficiency is 4% for a single track [32], and 8% for a pair of tracks. For R_{AA}, the systematic uncertainty in the tracking efficiency ratio between PbPb and pp data is 6% for a track [24], and 12% for a pair of tracks. The systematic uncertainty in the selection efficiency due to the geometrical criteria (6.9–11.6%) is evaluated by varying the selection variables. The systematic uncertainty in the D^0 HLT trigger efficiency (2.0–7.9%) is from the statistical precision of the number of D^0 meson candidates in the events common to the D^0 triggered and minimum-bias triggered samples. The systematic uncertainty in the acceptance and efficiency due to the simulated B meson p_T distribution (0.0–3.6%) is estimated by changing the default B meson p_T shapes (that reproduce the measured nonprompt D^0 spectra) to the fixed-order next-to-leading logarithm (FONLL) [33] pQCD calculated (pp) and FONLL+TAMU model [34, 35].
predicted (PbPb) B meson p_T shapes. The systematic uncertainty in the acceptance and efficiency due to the simulated B meson centrality distribution (0.4–2.3%) is estimated by assuming the B meson yield to be proportional to the number of participating nucleons instead of the number of inelastic nucleon-nucleon collisions. The total systematic uncertainty in each p_T interval is computed as the sum in quadrature of the individual uncertainties listed above.

Figure 2: Upper panel: $B \rightarrow D^0$ p_T-differential cross section in pp collisions and invariant yield in PbPb collisions normalized with T_{AA}, at $\sqrt{s_{NN}} = 5.02$ TeV. The vertical bands around the data points represent the bin-by-bin systematic uncertainties. Uncertainties are smaller than the symbols in most cases. The cross section in pp collisions is compared to FONLL calculations [33]. Lower panel: The data/FONLL ratio for the $B \rightarrow D^0$ p_T spectra in pp collisions.

In Fig. 2, the $B \rightarrow D^0$ p_T-differential cross section in pp collisions and the invariant yield in PbPb collisions normalized with T_{AA} are presented. The plot also shows the nonprompt D^0 p_T spectra found by decaying a B meson p_T spectrum calculated using FONLL [33] pQCD. The ratio of the measured pp spectrum over the FONLL prediction is shown in the bottom panel. The measurement in pp collisions lies close to the upper limit of the FONLL predicted range.

Figure 3 shows the $B \rightarrow D^0$ nuclear modification factor R_{AA}. It can be seen that the $B \rightarrow D^0$ R_{AA} is below unity in the measured p_T range from 2 to 100 GeV/c. In the upper panel, the $B \rightarrow D^0$ R_{AA} is compared with the R_{AA} of B mesons [18], nonprompt J/ψ mesons from b hadron decays [19], prompt D^0 mesons [16], and charged hadrons [24]. The $B \rightarrow D^0$ R_{AA} is close to the B meson and nonprompt J/ψ meson results, and extends the reach of b quark related R_{AA} studies to a larger p_T coverage at midrapidity. The $B \rightarrow D^0$ yield is less suppressed than prompt D^0 mesons and charged hadrons with p_T around 10 GeV/c. This may reflect a dependence of the suppression effects on the quark mass [10], although a direct comparison requires a full modeling of the quark initial spectrum and hadronization, as well as of the decay kinematics.

In the lower panel of Fig. 3, the measured $B \rightarrow D^0 R_{AA}$ is compared with various theoretical predictions. The CUJET and EPOS2+MC@SHQ models are perturbative QCD-based calculations that include both collisional and radiative energy loss [36–39]. The TAMU model is a transport model based on a Langevin equation that includes collisional energy loss and heavy
quark diffusion in the medium [34, 35]. The PHSD model is a microscopic off-shell transport model based on a Boltzmann approach that includes collisional energy loss only [40, 41]. At higher \(p_T \), the CUJET, EPOS2+MC@sHQ and TAMU models all match the data well. However, at \(p_T \) below 5 GeV/c, our measurements show a hint of stronger suppression than predicted by all available models in this \(p_T \) range. This could indicate a stronger energy loss of b quarks in QGP than predicted at low \(p_T \), where collisional parton energy loss begins to dominate. It could also be due to other effects. For example, the fraction of b baryons out of all b hadrons may be enhanced at low \(p_T \) in PbPb collisions, because b quarks can hadronize with light quarks in the medium [42-45]. Given the much lower decay fractions of b baryons \(\rightarrow D^0 \) with respect to the \(B^\pm \rightarrow D^0 \) and \(B^0 \rightarrow D^0 \) cases, fewer b hadrons are seen in this analysis than expected by the models. This baryon enhancement effect is not accounted for by the models considered.

In summary, this letter presents the transverse momentum spectra of \(D^0 \) mesons from b hadron decays measured in pp and PbPb collisions at a center-of-mass energy \(\sqrt{s_{\text{NN}}}=5.02 \text{ TeV} \) per nucleon pair with the CMS detector at the LHC. The \(D^0 \) mesons from b hadron decays are distinguished from the prompt \(D^0 \) mesons by the distance of closest approach of the \(D^0 \) path relative to the primary vertex. The measured spectrum in pp collisions is close to the upper limit of a Fixed-Order Next-to-Leading Logarithm perturbative quantum chromodynamics calculation. In PbPb collisions, the \(B \rightarrow D^0 \) yield is suppressed in the measured transverse momentum \((p_T) \) range from 2 to 100 GeV/c. The \(B \rightarrow D^0 \) nuclear modification factor \(R_{\text{AA}} \) is higher than for prompt \(D^0 \) mesons and charged hadrons around 10 GeV/c, which is in line with a quark mass ordering of suppression. Compared to theoretical predictions, the measured \(R_{\text{AA}} \) is con-
istent with some models at higher p_T, but shows a hint of stronger suppression than all of the available models at low p_T. This could indicate a stronger energy loss of b quarks in the quark-gluon plasma than predicted at low p_T, or could reflect an enhanced b baryon production due to quark coalescence in PbPb collisions.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MON (Montenegro); MIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universität Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesa, L. Calligarisa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, SandraS. Padulaa

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,
Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, S. Khalil

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehanaht, M. Kadastik, M. Raidal, C. Veelken
Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Universidad Autónoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Nosov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov, V. Blinov, T. Dimova, L. Kardapoltsev, Y. Skovpen

Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, V. Okhotnikov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
University of Ruhuna, Department of Physics, Matara, Sri Lanka
N. Wickramage
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee
Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmel, M. Kaya, O. Kaya, S. Ozkorucuklu, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA

Catholic University of America, Washington DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok,

University of California, Los Angeles, USA

University of California, Riverside, USA

University of California, San Diego, USA

University of California, Santa Barbara - Department of Physics, USA

California Institute of Technology, USA

Cornell University, USA
University of Florida, Gainesville, USA

Florida International University, Miami, USA
Y.R. Joshi, S. Linn

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebbasoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA
University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, P. Tan, R. Taus
Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

University of Wisconsin - Madison, Madison, WI, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at University of Chinese Academy of Sciences, Beijing, China
7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
11: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
12: Also at Tbilisi State University, Tbilisi, Georgia
13: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
14: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
15: Also at University of Hamburg, Hamburg, Germany
19: Also at Brandenburg University of Technology, Cottbus, Germany
20: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
21: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
23: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
24: Also at Institute of Physics, Bhubaneswar, India
25: Also at Shoolini University, Solan, India
26: Also at University of Visva-Bharati, Santiniketan, India
27: Also at Isfahan University of Technology, Isfahan, Iran
28: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at Kyunghee University, Seoul, Korea
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Institute for Nuclear Research, Moscow, Russia
36: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at University of Florida, Gainesville, USA
39: Also at P.N. Lebedev Physical Institute, Moscow, Russia
40: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
42: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
43: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
44: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Riga Technical University, Riga, Latvia
47: Also at Universität Zürich, Zurich, Switzerland
48: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
49: Also at Gaziosmanpasa University, Tokat, Turkey
50: Also at Adiyaman University, Adiyaman, Turkey
51: Also at Istanbul Aydın University, Istanbul, Turkey
52: Also at Mersin University, Mersin, Turkey
53: Also at Piri Reis University, Istanbul, Turkey
54: Also at Ozyegin University, Istanbul, Turkey
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
59: Also at Istanbul Bilgi University, Istanbul, Turkey
60: Also at Hacettepe University, Ankara, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Monash University, Faculty of Science, Clayton, Australia
64: Also at Bethel University, St. Paul, USA
65: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
66: Also at Utah Valley University, Orem, USA
67: Also at Purdue University, West Lafayette, USA
68: Also at Beykent University, Istanbul, Turkey
69: Also at Bingol University, Bingol, Turkey
70: Also at Sinop University, Sinop, Turkey
71: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
72: Also at Texas A&M University at Qatar, Doha, Qatar
73: Also at Kyungpook National University, Daegu, Korea