Search for the production of a long-lived neutral particle decaying within the ATLAS hadronic calorimeter in association with a Z boson from pp collisions at $\sqrt{s} = 13$ TeV

This Letter presents a search for the production of a long-lived neutral particle decaying within the ATLAS hadronic calorimeter, in association with a Standard Model Z boson produced via an intermediate scalar boson, where $Z \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$). The data used were collected by the ATLAS detector during 2015 and 2016 pp collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb^{-1}. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its $c\tau$ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% confidence level up to 10% for m_{Z_d} between 5 and 15 GeV.
Many extensions to the Standard Model (SM) such as supersymmetry [1, 2], inelastic dark matter [3] and hidden valley scenarios [4, 5] predict the existence of long-lived neutral particles that can decay hadronically. Searches for the pair production of such particles have been carried out by the ATLAS [6–9], CMS [10, 11], and LHCb [12, 13] experiments at the Large Hadron Collider (LHC), and the CDF [14] and D0 [15] experiments at the Tevatron.

This Letter reports a search for hadronic decays of long-lived neutral particles, denoted by Z_d hereafter, singly produced in association with a SM Z boson through an intermediate scalar Φ or Higgs boson, $pp \rightarrow \Phi|H \rightarrow ZZ_d$, where $Z \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$). Production of a new particle in association with a Z boson is a popular scenario in hidden- or dark-sector models with an additional $U(1)_d$ dark gauge symmetry [16, 17]. One such model has been tested by the ATLAS experiment in a search for a new particle that is mediated by the Higgs boson and decays promptly to a lepton pair [18, 19]. This analysis expands the search to a more general case to include a possible new scalar (Φ) that couples to Z and Z_d, instead of only the Higgs boson, and considers the scenario in which the Z_d decays hadronically with a $c\tau$ between a few centimeters and tens of meters, where c is the speed of light and τ is the Z_d proper lifetime.

The analysis uses data from $\sqrt{s} = 13$ TeV proton–proton (pp) collisions at the LHC that were recorded by the ATLAS detector in 2015 and 2016 with single-electron and single-muon triggers [20], corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The ATLAS detector [21] is a multipurpose particle detector with a cylindrical geometry. It consists of an inner detector (ID) [22] surrounded by a solenoid that produces a 2 T magnetic field, electromagnetic and hadronic calorimeters, and a muon spectrometer in a magnetic field produced by a system of toroid magnets. The ID measures the trajectories of charged particles over the full azimuthal angle and in a pseudorapidity range of $|\eta| < 2.5$ using silicon pixel, silicon microstrip, and straw-tube transition-radiation tracker detectors. Liquid-argon electromagnetic calorimeters (LArCal) extend from 1.5 m to 2.0 m in radius in the barrel and from 3.6 m to 4.25 m in $|z|$ in the endcaps. A scintillator-tile calorimeter (TileCal) provides hadronic calorimetry and covers the region $2.25 \, m < r < 4.25 \, m$. The experimental signature searched for is the Z_d decaying within the TileCal, thus producing a jet that has little or no energy deposited in the LArCal, and no charged tracks that point to the primary vertex.

Monte Carlo (MC) simulated events are used to optimize the event selection and to help validate the analysis. Signal samples were generated using the PYTHIA 8.210 [23] generator with the NNPDF23LO parton distribution functions (PDF) [24] and the A14 set of tuned parameters (A14 tune) [25], with an assumption that the Z_d decays only to the highest-mass heavy quark pair ($b\bar{b}$ or $c\bar{c}$) that is kinematically allowed. Nine samples were produced with three different Z_d masses for each of three Φ masses ($m_{Z_d} = \{5, 10, 15\}, \{10, 50, 100\}$ and $\{20, 100, 200\}$ for $m_\Phi = 125, 250, 500 \, \text{GeV}$, respectively), where $m_\Phi = 125 \, \text{GeV}$ corresponds to the SM Higgs boson. The $c\tau$ of the Z_d is a free parameter in this model. For each mass hypotheses of Z_d and Φ, its $c\tau$ is chosen to maximize the probability for Z_d to decay inside the TileCal, which is found to be around 20% for all samples, as shown in Figure 1(a). The events were reweighted to produce samples with different $c\tau(Z_d)$ [8] between 0.01 m and 100 m. The dominant SM background arises from events with a Z boson produced in association with jets ($Z+jets$), where a jet mimics the experimental signature of Z_d decay inside the TileCal due to the presence of long-lived SM particles ($K_L, \Lambda, \text{etc.}$), out-of-time pileup (additional pp collisions occurring in bunch-crossings just before and after the collision of interest), noise, detector inefficiencies, and beam-induced background. Additional SM background processes include the production of top quarks and $W+jets$. The SM background MC samples are generated with the configurations described in Ref. [26] for $W/Z+jets$ production, and Ref. [27]

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. The distance between two objects in η–ϕ space is $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$. Transverse momentum is defined by $p_T = p \sin \theta$.

2
A data-driven approach is used to estimate the background. A control data sample of SM W+jets events for $\tau\tau$ and single top production. The effect of multiple pp interactions in the same and neighboring bunch crossings (pileup) is included by overlaying minimum-bias events simulated with Pythia 8.186 on each generated event in all samples. The generated samples were processed through a Geant 4-based detector simulation [28, 29] and the standard ATLAS reconstruction software.

The selected events have a pair of oppositely charged and isolated electrons [30] or muons [31] to form a Z boson candidate. Electrons and muons are required to have $|\eta| < 2.47$ and $|\eta| < 2.4$, respectively, and transverse momentum $p_T > 25$ GeV (27 GeV) in data collected in 2015 (2016). The invariant mass of the Z candidate ($m_{\tau\tau}$) is required to be between 66 GeV and 116 GeV. Selected jets must have transverse energy $E_T > 40$ GeV and $|\eta| < 2.0$ to ensure the jets are completely within the ID. They are reconstructed using the anti-k_t algorithm [32, 33] with a radius parameter $R = 0.4$ and calibrated to particle level [34]. Standard ATLAS jet-quality criteria [35] are applied, except the one for the hadronic energy fraction since it removes signal jets. A jet is considered as a Z_d candidate, referred to as a calorimeter-ratio-jet (CR-jet) hereafter, if it satisfies $\log_{10}(E_{\text{Tile}}/E_{\text{LAr}}) > 1.2$ with no ghost-associated [36] tracks of $p_T > 1$ GeV originating from the primary vertex, where E_{Tile} and E_{LAr} are the jet energy deposited in the TileCal and LArCal, respectively [6], as shown in Figure 1(b). Jets with $E_T < 60$ GeV in the transition region between the barrel and end-cap cryostats ($1.0 < |\eta| < 1.3$) are not considered as CR-jet candidates due to noise in the gap scintillator of the TileCal [37]. In addition, the timing of the CR-jet is required to be between -3 ns and 15 ns in order to suppress jets arising from out-of-time pileup and beam-induced backgrounds [6]. The timing of a jet is obtained from its constituent calorimeter cells by calculating an average time over cells weighted by cell-energy squared where the cell time is measured according to the bunch crossing clock, relative to the expected time-of-flight from the bunch crossing to the cell [38]. After this selection, the number of selected events containing a CR-jet with an E_T above a chosen threshold is compared with the predicted total number of background events. The minimum E_T requirement of the selected CR-jets is further optimized to achieve the highest experimental sensitivity for each mass hypothesis. It is set to be 40 GeV for $m_\Phi = 125$ GeV samples, 60 GeV for $m_\Phi = 250$ GeV samples and 80 GeV for $m_\Phi = 500$ GeV samples.

The signal efficiency times acceptance ($\epsilon \times A$) is defined as the ratio of the number of selected signal events in MC simulations to the number of generated signal events. It is a function of m_Φ, m_{Z_d} and the $c\tau(Z_d)$. The maximal values vary between approximately 1% for lowest m_Φ samples to 5–7% for samples with larger Φ mass. The main loss is due to the low probability that Z_d decays inside the TileCal, as shown in Figure 1(a). The samples for $m_\Phi = 125$ GeV suffer further efficiency loss due to the jet E_T requirement.

A data-driven approach is used to estimate the background. A control data sample of SM W+jets events...
with the same event selection criteria of $W \rightarrow \ell \nu$ ($\ell = e, \mu$) in Ref. [39], is used to derive the probability for a jet to pass the selection of the CR-jet, assuming that the Z_d cannot be produced in association with a W boson. The probability is calculated as $f_{CR} = N_{CR-jet}/N_{jet}$ in bins of the jet E_T and η, where N_{CR-jet} is the number of jets that satisfy the CR-jet selection criteria and N_{jet} is the total number of jets from the $W+\text{jets}$ sample in each bin, as summarized in Table 1. For a selected event in data containing a $Z \rightarrow \ell \ell$ candidate and N jets, the corresponding probability for it to be identified as a signal event is therefore $P = 1 - \prod_{i=1}^{N}(1 - f_{CR}(E^i_T, \eta^i))$, where $f_{CR}(E^i_T, \eta^i)$ is the probability of the i-th jet in the event to satisfy the CR-jet selection criteria. The sum of the probabilities P for all the selected events is therefore the expected number of background events.

Table 1: The numbers of jets satisfying different requirements on minimum jet E_T and their corresponding averaged CR-jet selection probabilities in the $W \rightarrow \ell \nu$ samples.

<table>
<thead>
<tr>
<th>Minimum jet E_T (GeV)</th>
<th>40</th>
<th>60</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{CR-jet}(W \rightarrow e\nu)$</td>
<td>982</td>
<td>189</td>
<td>63</td>
</tr>
<tr>
<td>$N_{CR-jet}(W \rightarrow \mu\nu)$</td>
<td>1030</td>
<td>186</td>
<td>71</td>
</tr>
<tr>
<td>$N_{jet}(W \rightarrow e\nu)$</td>
<td>3.3×10^7</td>
<td>1.5×10^7</td>
<td>0.8×10^7</td>
</tr>
<tr>
<td>$N_{jet}(W \rightarrow \mu\nu)$</td>
<td>3.1×10^7</td>
<td>1.3×10^7</td>
<td>0.7×10^7</td>
</tr>
<tr>
<td>$f_{CR}(W \rightarrow e\nu)$</td>
<td>3.0×10^{-3}</td>
<td>1.3×10^{-6}</td>
<td>7.9×10^{-6}</td>
</tr>
<tr>
<td>$f_{CR}(W \rightarrow \mu\nu)$</td>
<td>3.3×10^{-5}</td>
<td>1.4×10^{-6}</td>
<td>9.7×10^{-6}</td>
</tr>
</tbody>
</table>

Studies [6] have shown that jets originating from quarks and gluons may have different probabilities of satisfying the selection criteria for CR-jets. MC simulations predict that jets from $W+\text{jets}$ and $Z+\text{jets}$ production are mostly initiated by quarks with a similar fraction ($\sim 73\%$). However, $W+\text{jets}$ data samples are contaminated with a significant fraction of SM multijet events with a misidentified lepton, which is estimated to be approximately 2% in the muon final state and 17% in the electron final state using background-enriched control samples [39]. SM multijets originate primarily from gluons and thus introduce a difference between the $Z+\text{jets}$ and $W+\text{jets}$ samples. The distributions of the track multiplicity of a jet in the $W/Z+\text{jets}$ samples, which are sensitive to the quark/gluon jet fraction [40], show a significant difference in Figure 1(c). As a result, the f_{CR} values measured in the muon final state are used for the central value of the background estimate, while the f_{CR} values measured in the electron final state are used as a cross-check to assign a systematic uncertainty due to different quark/gluon jet fractions in the $W+\text{jets}$ and $Z+\text{jets}$ samples. The measured probabilities, f_{CR}, are found to be dependent on the jet multiplicity in the event. Studies show that this is caused by the presence of jets from pileup interactions which deposit additional energy in the LArCal, suppressing the signature of CR-jets. The jet multiplicity and pileup distributions of events in the $W+\text{jets}$ sample are the same as those from the $Z+\text{jets}$ sample and therefore the parameterization of the measured f_{CR} as a function of jet multiplicity or pileup is not necessary.

Several studies were performed to validate the background estimation procedure. A $Z+\text{jets}$ sideband region is formed from events satisfying all signal selection criteria except the invariant-mass requirement for the Z candidate. The mass is required to be $30\text{GeV} < m_{\ell\ell} < 55\text{GeV}$. The events in the higher mass sideband $m_{\ell\ell} > 116\text{GeV}$ are not used as they are still dominated by $Z+\text{jets}$ production, as indicated by background MC simulations. Based on the measured CR-jet probability in $W+\text{jets}$, the expected numbers of background events with E_T of CR-jets greater than 40, 60, and 80 GeV are estimated to be 2.2 ± 0.2, 0.7 ± 0.1, and 0.3 ± 0.1, where the uncertainties are statistical only. They are consistent with the corresponding observations in data, which have 1, 1, and 0 events, respectively.

The background estimation method relies on an assumption that jets in the $W+\text{jets}$ sample have the same characteristics as jets in the $Z+\text{jets}$ sample. This assumption is tested using validation jets that are defined to satisfy the selection criteria of the CR-jets except the zero-track requirement. Validation jets must have
more than two associated tracks to avoid signal contamination, as MC-simulated signal events show that less than 1% of jets from Z_d decays inside the TileCal have more than two tracks. The probability for a jet to be identified as a validation jet is measured in the W/jets sample as a function of jet E_T and η and subsequently used to predict the number of events containing a $Z \rightarrow \ell \ell$ candidate and at least one validation jet. As a result, a global scale factor of 1.24, which is defined as the observed number of events with validation jets divided by the predicted value, is applied to the measured probabilities ($7\text{--}20\%$), and the scale factor uncertainty ($\sim 10\%$) measured using the validation jets. The uncertainty of the integrated luminosity is 2.1% [41, 42]. Uncertainties resulting from detector effects such as the trigger efficiencies, the energy scale and resolution of jets [34], lepton identification, reconstruction and isolation efficiencies, lepton momentum scales and resolutions [30, 31, 43] only affect the calculation of the selection efficiencies of Z_d signal events, since the background is estimated from the data. They are typically small ($< 1\text{--}5\%$). Pileup adds extra tracks and electromagnetic energy to jets. The systematic uncertainties associated with reweighting the pileup distribution from the generated MC simulations to the data are found to be typically small ($< 5\%$) except for the samples with $m_\Phi = 125$ GeV ($\sim 13\%$), in which case the Z_d have small energies and additional energy deposition in the LArCal from pileup can significantly affect their selection efficiencies. Since the CR-jets in this analysis have a very small fraction of their energies inside the LArCal, the in situ jet energy intercalibration [6, 34] is repeated using the p_T balance method in dijets events, and the observed difference between the data and MC simulation is used to derive an additional systematic uncertainty of the jet energy scale. The corresponding effect on the signal efficiencies is found to be approximately 5--9% for samples with $m_\Phi = 125$ GeV, and negligible for samples with higher m_Φ values. The effects on the signal efficiency and acceptance due to theoretical uncertainties, such as PDF choice and initial- and final-state radiation modeling, are found to be very small ($< 1\%$).

Table 2 shows the predicted numbers of background events and the observed data events with different minimum E_T requirements for the selected CR-jets. The data are well-described by the background estimate. In the absence of any significant data excess, upper limits (UL) on the signal yield of $pp \rightarrow \Phi \rightarrow ZZ_d$ at the 95% confidence level (CL) are derived using the CL$_s$ method [44] taking into account both the statistical and systematic uncertainties. The results are listed in Table 2.

Table 2: Event yields for the predicted backgrounds and data, and the expected and observed UL on the signal yields at the 95% CL. The reported errors include both the statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>Minimum jet E_T</th>
<th>40 GeV</th>
<th>60 GeV</th>
<th>80 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Data</td>
<td>175 \pm22</td>
<td>33.0 \pm4.4</td>
<td>13.2 \pm3.5</td>
</tr>
<tr>
<td>Expected UL</td>
<td>65</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>Observed UL</td>
<td>50</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>

The results are further reinterpreted as the UL on the production cross section of Φ times the decay branching fraction $B(\Phi \rightarrow ZZ_d)$, as a function of m_Φ, m_{Z_d}, and c_T of the Z_d. In the case of the SM Higgs boson, where $m_H = 125$ GeV, the UL on $B(H \rightarrow ZZ_d)$ are evaluated using the SM Higgs boson cross section $c_{SM} = 48.5^{+4.6}_{-6.7}$ pb [45] of the gluon–gluon fusion process; other production modes are ignored. The results, reweighted to other c_T [8], are shown in Figure 2.

In conclusion, a search for a long-lived neutral particle Z_d produced in association with a SM Z boson via coupling to an intermediate scalar boson is presented. The analysis is based on 36.1 fb$^{-1}$ of pp collisions.
Figure 2: (a) Observed 95% CL limits on the decay branching fraction of $B(H \to ZZ_d)$ for the SM Higgs boson as a function of the $c\tau(Z_d)$. (b) and (c) Observed 95% CL limits on the production cross section (σ) of Φ times its decay branching fraction to ZZ_d as a function of the $c\tau(Z_d)$.

at $\sqrt{s} = 13$ TeV collected in 2015 and 2016 with the ATLAS detector at the LHC. No excess over the expected background was observed. Upper limits on the production cross section of the scalar boson times its branching fraction to the long-lived neutral particle at 95% CL are derived as a function of the particle proper lifetimes for different masses of the scalar boson and the Z_d. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% CL up to 10% for m_{Z_d} between 5 and 15 GeV.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFU, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [46].
References

H. Davoudiasl, H.-S. Lee, I. Lewis, and W. J. Marciano,

ATLAS Collaboration,

M. Aaboud et al.,

ATLAS Collaboration,

ATLAS Collaboration,

B. Abbott et al.,

T. Sjöstrand et al.,

R. D. Ball et al.,

ATLAS Collaboration,

ATLAS Collaboration,

ATLAS Collaboration,

S. Agostinelli et al.,

ATLAS Collaboration,

ATLAS Collaboration,

ATLAS Collaboration,

M. Cacciari, G. P. Salam, and G. Soyez,

M. Cacciari, G. P. Salam, and G. Soyez,

ATLAS Collaboration,

ATLAS Collaboration,

26 Department of Physics, Brandeis University, Waltham MA; United States of America.
27 (a) Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara, Romania.
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30 (a) Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
32 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
33 Department of Physics, Carleton University, Ottawa ON; Canada.
34 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Énergie des Sciences Techniques Nucléaires (CNESTEN), Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPEHA-Marrakech; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat; Morocco.
35 CERN, Geneva; Switzerland.
36 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
37 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
38 Nevis Laboratory, Columbia University, Irvington NY; United States of America.
39 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
40 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.
41 Physics Department, Southern Methodist University, Dallas TX; United States of America.
42 Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
43 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm; Sweden.
44 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.
45 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.
46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.
47 Department of Physics, Duke University, Durham NC; United States of America.
48 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
49 INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
50 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
51 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.
52 Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
53 (a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova; Italy.
54 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.
55 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.
56 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.
58 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC,
Shanghai;\(^{(d)}\)Tsung-Dao Lee Institute, Shanghai; China.

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg;\(^{(b)}\)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.

Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong;\(^{(b)}\)Department of Physics, University of Hong Kong, Hong Kong;\(^{(c)}\)Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.

Department of Physics, Indiana University, Bloomington IN; United States of America.

INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine;\(^{(b)}\)ICTP, Trieste;\(^{(c)}\)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine; Italy.

INFN Sezione di Lecce;\(^{(b)}\)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.

INFN Sezione di Milano;\(^{(b)}\)Dipartimento di Fisica, Università di Milano, Milano; Italy.

INFN Sezione di Napoli;\(^{(b)}\)Dipartimento di Fisica, Università di Napoli, Napoli; Italy.

INFN Sezione di Pavia;\(^{(b)}\)Dipartimento di Fisica, Università di Pavia, Pavia; Italy.

INFN Sezione di Pisa;\(^{(b)}\)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.

INFN Sezione di Roma;\(^{(b)}\)Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.

INFN Sezione di Roma Tor Vergata;\(^{(b)}\)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.

INFN Sezione di Roma Tre;\(^{(b)}\)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.

INFN-TIFPA;\(^{(b)}\)Università degli Studi di Trento, Trento; Italy.

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.

University of Iowa, Iowa City IA; United States of America.

Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

Facility of Science, Kyoto University, Kyoto; Japan.

Kyoto University of Education, Kyoto; Japan.

Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

Physics Department, Lancaster University, Lancaster; United Kingdom.

Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

Department of Physics and Astronomy, University College London, London; United Kingdom.

Louisiana Tech University, Ruston LA; United States of America.

Fysiska institutionen, Lunds universitet, Lund; Sweden.

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France.
137\(^{(a)}\)Laboratório de Instrumentação e Física Experimental de Partículas - LIP;\(^{(b)}\)Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa;\(^{(c)}\)Departamento de Física, Universidade de Coimbra, Coimbra;\(^{(d)}\)Centro de Física Nuclear da Universidade de Lisboa, Lisboa;\(^{(e)}\)Departamento de Física, Universidade do Minho, Braga;\(^{(f)}\)Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain);\(^{(g)}\)Dep. Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Portugal.

138 Institute of Physics, Academy of Sciences of the Czech Republic, Prague; Czech Republic.

139 Czech Technical University in Prague, Prague; Czech Republic.

140 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.

141 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.

142 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.

143 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.

144\(^{(a)}\)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;\(^{(b)}\)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.

145 Department of Physics, University of Washington, Seattle WA; United States of America.

146 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.

147 Department of Physics, Shinshu University, Nagano; Japan.

148 Department Physik, Universität Siegen, Siegen; Germany.

149 Department of Physics, Simon Fraser University, Burnaby BC; Canada.

150 SLAC National Accelerator Laboratory, Stanford CA; United States of America.

151 Physics Department, Royal Institute of Technology, Stockholm; Sweden.

152 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.

153 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.

154 School of Physics, University of Sydney, Sydney; Australia.

155 Institute of Physics, Academia Sinica, Taipei; Taiwan.

156\(^{(a)}\)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;\(^{(b)}\)High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.

157 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.

158 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.

159 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

160 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.

161 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.

162 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

163 Tomsk State University, Tomsk; Russia.

164 Department of Physics, University of Toronto, Toronto ON; Canada.

165\(^{(a)}\)TRIUMF, Vancouver BC;\(^{(b)}\)Department of Physics and Astronomy, York University, Toronto ON; Canada.

166 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.

167 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.

168 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.

169 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

170 Department of Physics, University of Illinois, Urbana IL; United States of America.

171 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.

172 Department of Physics, University of British Columbia, Vancouver BC; Canada.

173 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
Also at Joint Institute for Nuclear Research, Dubna; Russia.
Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
Also at Louisiana Tech University, Ruston LA; United States of America.
Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.
Also at Manhattan College, New York NY; United States of America.
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
Also at National Research Nuclear University MEPhI, Moscow; Russia.
Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
Also at School of Physics, Sun Yat-sen University, Guangzhou; China.
Also at The City College of New York, New York NY; United States of America.
Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.
Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
Also at TRIUMF, Vancouver BC; Canada.
Also at Universita di Napoli Parthenope, Napoli; Italy.
* Deceased