ALICE 2017 luminosity determination for pp collisions at $\sqrt{s} = 5$ TeV

ALICE Collaboration

Abstract

Luminosity determination in ALICE is based on visible cross sections measured in van der Meer scans. In November 2017, the Large Hadron Collider provided proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 5$ TeV. A van der Meer scan was performed, in which the cross section was measured for two classes of visible interactions, based on particle detection in the ALICE luminometers: the T0 detector with pseudorapidity coverage $4.6 < \eta < 4.9$, $-3.3 < \eta < -3.0$ and the V0 detector with pseudorapidity coverage $2.8 < \eta < 5.1$, $-3.7 < \eta < -1.7$. This document describes the experimental setup for such a measurement and reports its results.

*See Appendix A for the list of collaboration members
1 Introduction

Luminosity determination in ALICE (A Large Ion Collider Experiment) [1] at the Large Hadron Collider (LHC) is based on visible cross sections measured in van der Meer (vdM) scans [2, 3]. The visible cross section σ_{vis} seen by a given detector (or set of detectors) with a given trigger condition is a fraction of the total inelastic interaction cross section σ_{inel}: $\sigma_{\text{vis}} = \varepsilon \sigma_{\text{inel}}$, where ε is the fraction of inelastic events that satisfy the trigger condition. In the following, a class of inelastic events satisfying a given trigger condition will be referred to as a reference process. Once the reference-process cross section (σ_{vis}) is measured, the luminosity at the ALICE interaction point (IP2) is determined as the reference-process rate divided by σ_{vis}. This procedure does not require a knowledge of ε.

In standard vdM scans, the two beams are moved across each other in the transverse directions x (horizontal) and y (vertical). The x and y scans are performed separately, the beams being head-on in the non-scanned direction. Measurement of the rate R of the reference process as a function of the beam separation Δx, Δy allows one to determine the luminosity L for head-on collisions of a pair of bunches with particle intensities N_1 and N_2 as

$$L = \frac{N_1 N_2 f_{\text{rev}}}{(h_x h_y)},$$ \hspace{1cm} (1)$$

where f_{rev} is the accelerator revolution frequency and h_x and h_y are the effective convolved beam widths in the two transverse directions. h_x and h_y are measured as the area below the $R(\Delta x, 0)$ and $R(0, \Delta y)$ curve (scan area), respectively, each divided by the head-on rate $R(0, 0)$. The cross section σ_{vis} for the chosen reference process is then

$$\sigma_{\text{vis}} = \frac{R(0, 0)}{L}. $$ \hspace{1cm} (2)$$

The formalism of Eq. [1] assumes complete factorisation of the beam profiles in the two transverse directions, such that the beam overlap region is fully described by the product $h_x h_y$. Previous studies performed at the LHC [4–9] have shown that factorisation can be broken to a non-negligible level. Such non-factorisation effects can be studied and quantified by measuring the luminous region parameters via the distribution of interaction vertices, as a function of the beam separation.

In 2017, the LHC provided proton-proton (pp) collisions at a centre-of-mass energy $\sqrt{s} = 5$ TeV. The ALICE luminosity determination for this data sample is based on a vdM scan performed on November 12, 2017 (LHC fill 6380), in which the cross section was measured for two reference processes. In Sec. [2] the detectors used for the measurement are briefly described, along with the relevant machine parameters and the adopted scan procedure. The vdM scan analysis procedure is extensively described in a previous note [3] dedicated to the 2015 luminosity determination in pp collisions at $\sqrt{s} = 13$ TeV; it is briefly recalled in Sec. [3] where the results and uncertainties for the visible cross section and the luminosity measurement are presented and discussed.

2 Experimental setup

In the November vdM scan, the cross section was measured for two reference processes: one is based on the V0 detector, the other on the T0 detector. A detailed description of these detectors is given in [1], and their performance is discussed in [10–12]. The V0 detector consists of two hodoscopes, with 32 scintillator tiles each, located on opposite sides of the IP2, at distances of 340 cm (V0A) and 90 cm (V0C) along the beam axis, covering the pseudorapidity (η) ranges $2.8 < \eta < 5.1$ (V0A) and $-3.7 < \eta < -1.7$ (V0C). The T0 detector consists of two arrays of 12 Cherenkov counters each, located on opposite sides of IP2, at distances of 370 cm (T0A) and 70 cm (T0C) along the beam axis, covering the pseudorapidity ranges $4.6 < \eta < 4.9$ (T0A) and $-3.3 < \eta < -3.0$ (T0C). Note that the clockwise-travelling LHC beam moves from side A to side C. The C side is the one hosting the ALICE muon arm [1].
The V0-based trigger condition, chosen as the reference process, requires at least one hit in each detector hodoscope, i.e. on both sides of IP2. A similar trigger condition defines the T0-based reference process, with the additional condition that the longitudinal coordinate of the interaction vertex lies in the range |z| < 30 cm, where z = 0 is the nominal IP2 position. More details on this online cut, which rejects the background from beam-gas and beam-satellite interactions, are given in [8].

During the vdM scan session, each proton beam consisted of 50 bunches and 22 bunch pairs were colliding at IP2. The minimum spacing between two consecutive bunches in each beam was 1 µs. The β* value at IP2 was 10 m. The nominal half vertical crossing angle of the two beams at IP2 was −365 µrad, the minus sign indicating that the two beams exit the crossing region with negative y coordinate with respect to the beam axis. The current in the ALICE solenoid (dipole) was 30 kA (6 kA), corresponding to a field strength of 0.5 T (0.7 T). The maximum beam separation during the scan was about 0.6 mm, corresponding to about six times the RMS of the transverse beam profile. The reference-process rates were recorded separately for each colliding bunch pair. Two pairs of horizontal and vertical scans were performed, to obtain two independent cross-section measurements per bunch pair. In addition, a length-scale calibration scan was performed.

The bunch intensities were on the order of 8-9×10¹⁰ protons per bunch. The bunch-intensity measurement is provided by the LHC instrumentation [13]: a DC current transformer (DCCT), measuring the total beam intensity, and a fast beam current transformer (fBCT), measuring the relative bunch intensities. For the relative bunch intensities, data from a second device, the ATLAS beam pick-up system (BPTX [14]) is also used. The measured beam intensity is corrected for the fraction of ghost and satellite charge. A measurement of ghost charge is provided independently by the LHCb collaboration, via the rate of beam-gas collisions occurring in nominally empty bunch slots, as described in [16], and by the LHC Longitudinal Density Monitor (LDM), which measures synchrotron radiation photons emitted by the beams [17]. The LDM provides in addition a measurement of the satellite-charge fraction. For this fill, the combined ghost- and satellite-charge correction factor to the bunch intensity product is found to be less than 0.1%.

3 Analysis and results

The reader is referred to Ref. [8] for a detailed description of all the analysis steps. Here, we briefly recall the main analysis features and provide numerical values for the relevant quantities entering the analysis.

The rates for the T0- and V0-based reference processes are determined from the raw trigger rates by taking into account contamination from beam-background, pileup effects and time-dependence of the bunch intensities. The correction for fake coincidences originating from pileup (see Eq. (3) in [8]) uses the ratios of single-side (A&C and C&A), i.e. no signal on one of the two sides) to two-side (A&C) events \(\alpha = \mu_{A&C}/\mu_{vis} \) and \(\beta = \mu_{C&A}/\mu_{vis} \), where \(\mu \) is the average number of events of a given type in a bunch crossing: \(\mu_{vis} = \mu_{A&C} = L \sigma_{vis} \), and similarly for \(\mu_{A&C} \) and \(\mu_{C&A} \). The \(\alpha \) and \(\beta \) parameters were determined by a simultaneous fit to the measured rates of A&C, C&A and A&C coincidences at various luminosities during the vdM scan, and found to be \(\alpha = 0.63 \), \(\beta = 0.57 \) for the T0 and \(\alpha = 0.088 \), \(\beta = 0.071 \) for the V0, with negligible statistical uncertainty. The nominal separation values are corrected

1ALICE uses a right-handed orthogonal Cartesian system whose origin is at the LHC Interaction Point 2 (IP2). The z axis is parallel to the mean beam direction at IP2 and points along the LHC Beam 2 (i.e. LHC anticlockwise). The x axis is horizontal and points approximately towards the center of the LHC. The y axis is approximately vertical and points upwards.

2The \(\beta(z) \) function describes the single-particle motion and determines the variation of the beam envelope as a function of the coordinate along the beam orbit (z). The notation \(\beta \) denotes the value of the \(\beta \) function at the interaction point.

3The radio-frequency (RF) configuration of the LHC is such that the accelerator orbit is divided in 3564 slots of 25 ns each. Each slot is further divided in ten buckets of 2.5 ns each. In nominally filled slots, the particle bunch is captured in the central bucket of the slot. Following the convention established in [13], the charge circulating outside of the nominally filled slots is referred to as ghost charge; the charge circulating within a nominally filled slot but not captured in the central bucket is referred to as satellite charge.
Fig. 1: (Colour online) Rates of the T_0 (top) and V_0 (bottom) reference process as a function of beam separation for one typical pair of colliding bunches in the first horizontal (left) and vertical (right) vdM scan. The solid red curve is a fit according to a modified Gaussian function [8].

for beam-beam deflection [18] and orbit drifts.

The luminous region parameters used for the length-scale and non-factorisation corrections are measured via the distribution of interaction vertices, determined with the ALICE Inner Tracking System [19] and Time Projection Chamber [20] detectors.

The scan curves are fitted with a modified Gaussian function (see Eq. (4) in [8]). An example of the fit is shown in Fig. 1. Two more models, one based on a double Gaussian function and one which uses numerical integration instead of a fit, are also used to evaluate systematic uncertainties. For each scan, the effective beam widths h_x, h_y and the head-on rate $R(0,0)$ are computed from the fit parameters. The beam widths are corrected by a length-scale calibration factor measured in a dedicated scan. The horizontal (vertical) factor is the slope parameter of a linear fit to the measured horizontal (vertical) vertex displacement versus the nominal one. Both fits are illustrated in Fig. 2. In order to account for the fit quality, the uncertainties on the fitted slopes are rescaled by $\sqrt{\chi^2/ndf}$ (only where such a quantity is larger than one). The final correction factor (obtained as the product of the two slopes) is 0.986 ± 0.002.

The measured beam widths are combined with the bunch intensities and head-on rates to determine the visible cross sections (Eq. 1 and 2). The possible impact of non-factorisation effects is evaluated by simultaneously fitting the rates and the luminous region parameters (positions, sizes, transverse tilt) with a three-dimensional non-factorisable double-Gaussian model [21], and computing the bias on the head-on luminosity with respect to a factorisable model.
ALICE luminosity determination for pp collisions at $\sqrt{s} = 5$ TeV (2017)

Fig. 2: (Colour online) Average horizontal (left) and vertical (right) vertex coordinate as a function of the nominal beam displacement in the length-scale calibration run, with superimposed linear fit (solid red line).

The procedure is repeated with several fitting schemes, both on a bunch-integrated and a bunch-by-bunch basis. The maximum observed bias (0.1%) is quoted as a systematic uncertainty.

The measured visible cross sections for the T0-based (V0-based) reference process in the two scans are shown in Fig. 3 for all the colliding bunch pairs, as a function of the product $N_1 N_2$ of the colliding bunch intensities. No significant dependence of the results on $N_1 N_2$ is observed. The combined effect of the beam-beam deflection and orbit drift correction is about 1.4% for the first scan, and slightly smaller for the second scan. The effect of orbit drift alone is about 0.1%. The results from the two scans (cf. Fig. 3 and 4) differ by 0.5% (0.4%) for T0 (V0), which is larger than the statistical uncertainties. Hence, the difference is retained as a systematic uncertainty. The weighted average of the results of the two scans is retained as the final result: $\sigma_{T0} = 20.82 \pm 0.01 \text{ (stat.) mb, } \sigma_{V0} = 50.87 \pm 0.04 \text{ (stat.) mb.}$
Fig. 4: Visible cross section for the V0 measured in the first (top) and second (bottom) vdM scan, as a function of the product of the intensities of the colliding bunch pair. Only the statistical uncertainties are shown. The solid line is a constant fit to the data.

Comparing the ratio σ_{T0}/σ_{V0} obtained from the vdM scan (where, for head-on beams, $\mu_{vis} \approx 0.2$ for the V0) to the ratio between the T0 and V0 rates measured at lower interaction rate ($\mu_{vis} \approx 0.02$ for the V0) in the same LHC fill as the vdM scan, a difference of 0.7% is measured. To account for such a discrepancy of the ratio an uncorrelated systematic uncertainty of $0.7%/\sqrt{2}$, associated to the pileup correction, is assigned to both cross sections. A list of all the systematic uncertainties considered for the visible cross-section measurement is presented in Table 1. Uncertainties not discussed above are evaluated as detailed in [8]. Combining all the uncertainties one obtains for the T0 (V0) a total systematic uncertainty of 1.5% (1.8%), with an uncorrelated component between the two measurements arising from pileup and background subtraction. The statistical uncertainties are negligible with respect to the systematic ones.

The 2017 campaign at $\sqrt{s} = 5$ TeV consisted of about 10 days of data-taking. With the exception of the first two fills, in all the used filling schemes the minimum spacing between consecutive bunches was 25 ns. In order to test the stability of the luminosity measurement provided by the T0 and the V0 for this data set, the ratio between the luminosities measured by the two detectors has been computed for all recorded runs. For each run, the integrated luminosity is measured from the counts of the T0- and V0-based triggers; these are corrected for background and pileup with the same procedure, described in [8], used in the vdM scan, and divided by the corresponding cross section. The results are shown as a function of the run end time in Fig. 5 left. In the first 40 runs, taken at relatively low μ_{vis} (typically ≈ 0.003 for V0), the ratio is systematically lower than unity, by about 1%. In the last 10 runs, taken at higher μ_{vis} (typically ≈ 0.04 for V0), the ratio is systematically higher than unity, again by about 1%. Possible explanations for such a behaviour are non-perfect background subtraction at low μ_{vis}, and non perfect pileup correction or a decrease of the V0 efficiency at higher μ_{vis}. Fig. 5, right, depicts the distribution of the luminosity ratio over all runs. Each run is weighted with the corresponding integrated luminosity. The mean quadratic difference from unity of the ratio is 1.1%, and is assigned as a systematic uncertainty to the luminosity measurement, to be combined with the uncertainties on the visible cross sections (see Table 1).

\(^4\)In the ALICE nomenclature, a run is a set of data collected within a start and a stop of the data acquisition, under stable detector and trigger configurations. For the considered data-taking period, the duration of a run ranges from ≈ 13 minutes to ≈ 11 hours.
Table 1: Relative uncertainties on the measurement of visible cross sections and luminosity in pp collisions at $\sqrt{s} = 5$ TeV.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-factorisation</td>
<td>0.1%</td>
</tr>
<tr>
<td>Orbit drift</td>
<td>0.1%</td>
</tr>
<tr>
<td>Beam-beam deflection</td>
<td>0.5%</td>
</tr>
<tr>
<td>Dynamic β^*</td>
<td>0.2%</td>
</tr>
<tr>
<td>Background subtraction</td>
<td>0.2% (T0), 1.1% (V0)</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.5%</td>
</tr>
<tr>
<td>Length-scale calibration</td>
<td>0.2%</td>
</tr>
<tr>
<td>Fit model</td>
<td>0.5%</td>
</tr>
<tr>
<td>h_x/h_y consistency (T0 vs V0)</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Luminosity decay</td>
<td>0.9%</td>
</tr>
<tr>
<td>Bunch-by-bunch consistency</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Scan-to-scan consistency</td>
<td>0.5% (T0), 0.4% (V0)</td>
</tr>
<tr>
<td>Beam centreing</td>
<td>0.2%</td>
</tr>
<tr>
<td>Bunch intensity</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total on visible cross section</td>
<td>1.5% (T0), 1.8% (V0)</td>
</tr>
<tr>
<td>Stability and consistency</td>
<td>1.1%</td>
</tr>
<tr>
<td>Total on luminosity</td>
<td>1.8% (T0), 2.1% (V0)</td>
</tr>
</tbody>
</table>

Fig. 5: Left, ratio of the T0-based (L_{T0}) to the V0-based (L_{V0}) luminosity for pp collisions at $\sqrt{s} = 5$ TeV, as a function of time during the 2017 campaign. Right, distribution of L_{T0} / L_{V0}, after weighting each run with the corresponding integrated luminosity (L_{int}).

4 Conclusions

In 2017, the ALICE experiment took data with pp collisions at $\sqrt{s} = 5$ TeV. In order to provide a reference for luminosity determination, a vdM scan was performed and visible cross sections were measured for two processes, based on the T0 (with pseudorapidity coverage $4.6 < \eta < 4.9, -3.3 < \eta < -3.0$) and V0 ($2.8 < \eta < 5.1, -3.7 < \eta < -1.7$) detectors. The two detectors provide independent measurements of the luminosity, with a total uncertainty of 1.8% for the T0 and 2.1% for the V0. A detailed list of the origin and size of the considered uncertainties for both, the visible cross section and the luminosity measurement, is reported in Table 1.
Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alkhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC), China; Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP),
United States of America.

References

ALICE luminosity determination for pp collisions at √s = 5 TeV (2017)
ALICE luminosity determination for pp collisions at $\sqrt{s} = 5$ TeV (2017)

Affiliation Notes

1 Deceased
II Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
III Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
IV Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
V Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
3 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
4 Budker Institute for Nuclear Physics, Novosibirsk, Russia
5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’, Rome, Italy
11 Chicago State University, Chicago, Illinois, United States
12 China Institute of Atomic Energy, Beijing, China
13 Chonbuk National University, Jeonju, Republic of Korea
14 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
15 COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
16 Creighton University, Omaha, Nebraska, United States
17 Department of Physics, Aligarh Muslim University, Aligarh, India
18 Department of Physics, Pusan National University, Pusan, Republic of Korea
19 Department of Physics, Sejong University, Seoul, Republic of Korea
20 Department of Physics, University of California, Berkeley, California, United States
21 Department of Physics, University of Oslo, Oslo, Norway
22 Department of Physics and Technology, University of Bergen, Bergen, Norway
23 Dipartimento di Fisica dell’Università ’La Sapienza’ and Sezione INFN, Rome, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
26 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
30 Dipartimento di Fisica ’E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Faculty of Science, P.J. Šafář University, Košice, Slovakia
Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Gangneung-Wonju National University, Gangneung, Republic of Korea
Gauhati University, Department of Physics, Guwahati, India
Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
Helsinki Institute of Physics (HIP), Helsinki, Finland
High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
Hiroshima University, Hiroshima, Japan
Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Indian Institute of Technology Bombay (IIT), Mumbai, India
Indian Institute of Technology Indore, Indore, India
Indonesian Institute of Sciences, Jakarta, Indonesia
INFN, Laboratori Nazionali di Frascati, Frascati, Italy
INFN, Sezione di Bari, Bari, Italy
INFN, Sezione di Bologna, Bologna, Italy
INFN, Sezione di Cagliari, Cagliari, Italy
INFN, Sezione di Catania, Catania, Italy
INFN, Sezione di Padova, Padova, Italy
INFN, Sezione di Roma, Rome, Italy
INFN, Sezione di Torino, Turin, Italy
INFN, Sezione di Trieste, Trieste, Italy
Inha University, Incheon, Republic of Korea
Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
Institute for Theoretical and Experimental Physics, Moscow, Russia
Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Institute of Space Science (ISS), Bucharest, Romania
Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
iThemba LABS, National Research Foundation, Somerset West, South Africa
Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
KTO Karatay University, Konya, Turkey
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
Nagasaki Institute of Applied Science, Nagasaki, Japan
Nara Women’s University (NWU), Nara, Japan
National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
National Centre for Nuclear Research, Warsaw, Poland
National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
National Nuclear Research Center, Baku, Azerbaijan
National Research Centre Kurchatov Institute, Moscow, Russia
Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
NRC Kurchatov Institute IHEP, Protvino, Russia
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Ohio State University, Columbus, Ohio, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Jammu, Jammu, India
Physics Department, University of Rajasthan, Jaipur, India
Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physik Department, Technische Universität München, Munich, Germany
Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
Rudjer Bošković Institute, Zagreb, Croatia
Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
Shanghai Institute of Applied Physics, Shanghai, China
St. Petersburg State University, St. Petersburg, Russia
Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
Suranaree University of Technology, Nakhon Ratchasima, Thailand
Technical University of Košice, Košice, Slovakia
Technische Universität München, Excellence Cluster ‘Universe’, Munich, Germany
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
The University of Texas at Austin, Austin, Texas, United States
Universidad Autónoma de Sinaloa, Culiacán, Mexico
Universidade de São Paulo (USP), São Paulo, Brazil
Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
Universidade Federal do ABC, Santo Andre, Brazil
University College of Southeast Norway, Tonsberg, Norway
University of Cape Town, Cape Town, South Africa
University of Houston, Houston, Texas, United States
University of Jyväskylä, Jyväskylä, Finland
University of Liverpool, Liverpool, United Kingdom
University of Science and Technology of China, Hefei, China
University of Tennessee, Knoxville, Tennessee, United States
University of the Witwatersrand, Johannesburg, South Africa
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
Université Paris-Saclay Centre d’Études de Saclay (CEA), IRFU, Department de Physique Nucléaire (DPhN), Saclay, France
Università degli Studi di Foggia, Foggia, Italy
Università degli Studi di Pavia and Sezione INFN, Pavia, Italy
Università di Brescia and Sezione INFN, Brescia, Italy
Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, Michigan, United States
Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
Yale University, New Haven, Connecticut, United States
Yonsei University, Seoul, Republic of Korea