Search for chargino and neutralino production in final states with a Higgs boson and missing transverse momentum at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

A search is conducted for the electroweak pair production of a chargino and a neutralino $pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_2^0$, where the chargino decays into the lightest neutralino and a W boson, $\tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 W^\pm$, while the neutralino decays into the lightest neutralino and a Standard Model-like 125 GeV Higgs boson, $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 h$. Fully hadronic, semileptonic, diphoton, and multilepton (electrons, muons) final states with missing transverse momentum are considered in this search. Higgs bosons in the final state are identified by either two jets originating from bottom quarks ($h \rightarrow b\bar{b}$), two photons ($h \rightarrow \gamma\gamma$), or leptons from the decay modes $h \rightarrow WW$, $h \rightarrow ZZ$ or $h \rightarrow \tau\tau$. The analysis is based on 36.1 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider. Observations are consistent with the Standard Model expectations, and 95% confidence-level limits of up to 680 GeV in $\tilde{\chi}_1^+/\tilde{\chi}_2^0$ mass are set in the context of a simplified supersymmetric model.
1 Introduction

Theoretical and experimental arguments suggest that the Standard Model (SM) is an effective theory valid up to a certain energy scale. The observation by the ATLAS and CMS collaborations of a particle consistent with the SM Higgs boson [1–4] has brought renewed attention to the mechanism of electroweak symmetry breaking and the hierarchy problem [5–8]: the Higgs boson mass is strongly sensitive to quantum corrections from physics at very high energy scales and demands a high level of fine-tuning. Supersymmetry (SUSY) [9–14] resolves the hierarchy problem by introducing for each known boson or fermion a new partner (superpartner) that shares the same mass and internal quantum numbers if supersymmetry is unbroken. However, these superpartners have not been observed, so SUSY must be a broken symmetry and the mass scale of the supersymmetric particles is as yet undetermined. The possibility of a supersymmetric dark matter (DM) candidate [15, 16] is related closely to the conservation of R-parity [17]. Under the R-parity conservation hypothesis, the lightest supersymmetric particle (LSP) is stable. If the LSP is weakly interacting, it may provide a viable DM candidate. The nature of the LSP is defined by the mechanism that spontaneously breaks supersymmetry and the parameters of the chosen theoretical framework.
In the SUSY scenarios considered as benchmarks in this paper, the LSP is the lightest of the neutralinos ($\tilde{\chi}^0_1$) which, together with the charginos ($\tilde{\chi}^\pm_1$), represent the mass eigenstates formed from the mixture of the γ, W, Z and Higgs bosons’ superpartners (the higgsinos, winos and binos). The neutralinos and charginos are collectively referred to as electroweakinos. Specifically, the electroweakino mass eigenstates are designated in order of increasing mass as $\tilde{\chi}^+_1 \rightarrow W^+ \tilde{\chi}^0_1$ and $\tilde{\chi}^0_j \rightarrow W^+ \tilde{\chi}^0_1$ (neutralinos). In the models considered in this paper, the compositions of the lightest chargino ($\tilde{\chi}^+_1$) and next-to-lightest neutralino ($\tilde{\chi}^0_2$) are wino-like and the two particles are nearly mass degenerate, while the lightest neutralino ($\tilde{\chi}^0_1$) is assumed to be bino-like.

Naturalness considerations [18, 19] suggest that the lightest of the charginos and neutralinos have masses near the electroweak scale. Their direct production may be the dominant mechanism at the Large Hadron Collider (LHC) if the superpartners of the gluon and quarks are heavier than a few TeV. In SUSY models where the masses of the heaviest (pseudoscalar, charged) MSSM Higgs boson and the superpartners of the leptons have masses larger than those of the lightest chargino and next-to-lightest neutralino, the former might decay into the $\tilde{\chi}^0_1$ and a W boson ($\tilde{\chi}^+_1 \rightarrow W \tilde{\chi}^0_1$), while the latter could decay into the $\tilde{\chi}^0_1$ and the lightest MSSM Higgs boson (h, SM-like), or Z boson ($\tilde{\chi}^0_2 \rightarrow h/Z \tilde{\chi}^0_1$) [17, 20, 21]. The decay via the Higgs boson is dominant for many choices of the parameters as long as the mass-splitting between the two lightest neutralinos is larger than the Higgs boson mass and the higgsinos are heavier than the winos. SUSY models of this kind, where sleptons are not too heavy although with masses above that of $\tilde{\chi}^+_1$ and $\tilde{\chi}^0_2$, could provide a possible explanation for the discrepancy between measurements of the muon’s anomalous magnetic moment $g - 2$ and SM predictions [22–25].

This paper presents a search in proton-proton collision produced at the LHC at a center-of-mass energy $\sqrt{s} = 13$ TeV for the direct pair production of mass-degenerate charginos and next-to-lightest neutralinos that promptly decay as $\tilde{\chi}^+_1 \rightarrow W \tilde{\chi}^0_1$ and $\tilde{\chi}^0_2 \rightarrow h \tilde{\chi}^0_1$. The search targets hadronic and leptonic decays of both the W and Higgs bosons. Three Higgs decay modes are considered: decays into a pair of b-quarks, a pair of photons, or a pair of W or Z bosons or τ-leptons, where at least one of the $W/Z/\tau$ decays leptonically.

Four signatures are considered, illustrated in Figure 1. All final states contain missing transverse momentum (p_T^{miss}, with magnitude E_T^{miss}) from neutralinos, and in some cases neutrinos. Events are characterized by the various decay modes of the W and Higgs bosons. The signatures considered have: jets, with two of them originating from the fragmentation of b-quarks, called b-jets, and either no leptons ($0\ell b\bar{b}$, Figure 1(a)), or exactly one lepton ($\ell = e, \mu$) ($1\ell b\bar{b}$, Figure 1(b)); two photons and one lepton ($1\ell\gamma\gamma$, Figure 1(c)); only leptons (Figure 1(d)) such that the final state contains either two leptons with the same electric charge, $\ell^+\ell^-$, or three leptons, 3ℓ.

A simplified SUSY model [26, 27] is considered for the optimization of the search and the interpretation of results. The $\tilde{\chi}^+_1 \rightarrow W \tilde{\chi}^0_1$ and $\tilde{\chi}^0_2 \rightarrow h \tilde{\chi}^0_1$ decays are assumed to have 100% branching ratio. The Higgs boson mass is set to 125 GeV and its branching ratios are assumed to be the same as in the SM. The Higgs boson candidate can be fully reconstructed with $0\ell b\bar{b}$, $1\ell b\bar{b}$ and $1\ell\gamma\gamma$ signatures, while $\ell^+\ell^-$ and 3ℓ final states are sensitive to decays $h \rightarrow WW$, $h \rightarrow ZZ$ and $h \rightarrow \tau\tau$. Previous searches for charginos and neutralinos at the LHC targeting decays via the Higgs boson into leptonic final states have been reported by the ATLAS [28] and CMS [29] collaborations; a search in the hadronic channel is also reported in this paper.
2 ATLAS detector

The ATLAS detector [30] is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and nearly 4π coverage in solid angle. The inner tracking detector consists of pixel and microstrip silicon detectors covering the pseudorapidity region $|\eta| < 2.5$, surrounded by a transition radiation tracker which enhances electron identification in the region $|\eta| < 2.0$. A new inner pixel layer, the insertable B-layer [31, 32], was added at a mean radius of 3.3 cm during the period between Run 1 and Run 2 of the LHC. The inner detector is surrounded by a thin superconducting solenoid providing an axial 2 T magnetic field and by a fine-granularity lead/liquid-argon (LAr) electromagnetic calorimeter covering $|\eta| < 3.2$. A steel/scintillator-tile calorimeter provides hadronic coverage in the central pseudorapidity range ($|\eta| < 1.7$). The endcap and forward regions ($1.5 < |\eta| < 4.9$) of the hadronic calorimeter are made of LAr active layers with either copper or tungsten as the absorber material. A muon spectrometer with an air-core toroid magnet system surrounds the calorimeters. Three layers of high-precision tracking chambers provide coverage in the range $|\eta| < 2.7$, while dedicated fast chambers allow triggering in the region $|\eta| < 2.4$. The ATLAS trigger system consists of a hardware-based level-1 trigger followed by a software-based high-level trigger [33].

3 Data and Monte Carlo simulation

The data used in this analysis were collected in pp collisions at the LHC with a center-of-mass energy of 13 TeV and a 25 ns proton bunch crossing interval during 2015 and 2016. The full dataset corresponds to an integrated luminosity of 36.1 fb$^{-1}$ after requiring that all detector subsystems were operational during data recording. The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%. It is derived, following a methodology similar to that detailed in Ref. [34], and using the LUCID-2 detector for the baseline luminosity measurements [35], from calibration of the luminosity scale using x–y beam-separation

\[y = 0.5 \ln\frac{(E + p_z)}{(E - p_z)} \]

where E denotes the energy and p_z is the component of the momentum along the beam direction. The angular distance ΔR is defined as $\sqrt{\Delta y^2 + (\Delta \phi)^2}$.
scans. Each event includes on average 13.7 and 24.9 inelastic pp collisions in the same bunch crossing (pileup) in the 2015 and 2016 datasets, respectively. In the $0\ell \bar{b}b$ and $1\ell \bar{b}b$ channels, events are required to pass E^miss_T triggers with period-dependent thresholds. These triggers are fully efficient for events with $E^\text{miss}_T > 200$ GeV reconstructed offline. Data for the $1\gamma \gamma$ signature were collected with a diphoton trigger which selects events with at least two photons, with transverse momentum thresholds on the highest- and second-highest p_T photons of 35 GeV and 25 GeV, respectively. A combined set of dilepton and single-lepton triggers was used for event selection in the $\ell^+ \ell^-$ and 3ℓ channels.

Monte Carlo (MC) samples of simulated events are used to model the signal and to aid in the estimation of SM background processes, with the exception of multijet processes, which are estimated from data. All simulated samples were produced using the ATLAS simulation infrastructure [36] and GEANT4 [37], or a faster simulation based on a parameterization of the calorimeter response and GEANT4 for the other detector systems. The simulated events were reconstructed with the same algorithm as that used for data. SUSY signal samples were generated with MadGraph5_aMC@NLO v2.2.3 [38] (v2.3.3 for $0\ell \bar{b}b$) at leading order (LO) and interfaced to Pythia v8.186 [39] (v8.212 for $0\ell \bar{b}b$) with the A14 [40] set of tuned parameters (tune) for the modeling of the parton showering (PS), hadronization and underlying event. The matrix element (ME) calculation was performed at tree level and includes the emission of up to two additional partons. The ME–PS matching was done using the CKKW-L [41] prescription, with a matching scale set to one quarter of the chargino and next-to-lightest neutralino mass. The NNPDF23LO [42] parton distribution function (PDF) set was used. The cross-sections used to evaluate the signal yields are calculated to next-to-leading-order (NLO) accuracy in the strong coupling constant, adding the resummation of soft gluon emission at next-to-leading-logarithm accuracy (NLO+NLL) [43–45]. The nominal cross-section and its uncertainty are taken as the midpoint and half-width of an envelope of cross-section predictions using different PDF sets and factorization and renormalization scales, as described in Ref. [46].

Background samples were simulated using different MC event generators depending on the process. All background processes are normalized to the best available theoretical calculation of their respective cross-sections. The event generators, the accuracy of theoretical cross-sections, the underlying-event parameter tunes, and the PDF sets used in simulating the SM background processes are summarized in Table 1. For all samples, except those generated using Sherpa [47], the EvtGen v1.2.0 [48] program was used to simulate the properties of the bottom- and charm-hadron decays. Several samples produced without detector simulation are employed to estimate systematic uncertainties associated with the specific configuration of the MC generators used for the nominal SM background samples. They include variations of the renormalization and factorization scales, the CKKW-L matching scale, as well as different PDF sets and fragmentation/hadronization models. Details of the MC modeling uncertainties are discussed in Section 7.

4 Event reconstruction and object definitions

Common event-quality criteria and object reconstruction definitions are applied for all analysis channels, including standard data-quality requirements to select events taken during optimal detector operation. In addition, each analysis channel applies selection criteria that are specific to the objects and kinematics of interest in those final states, which are described in Section 6.

Events are required to have at least one primary vertex, defined as the vertex associated with at least two tracks with $p_T > 0.4$ GeV and with the highest sum of squared transverse momenta of associated tracks [55].
Quality criteria are imposed to reject events that contain at least one jet arising from non-collision sources or detector noise [56].

Electron candidates are reconstructed from energy clusters in the electromagnetic calorimeter and inner-detector tracks. They are required to satisfy the loose likelihood identification criteria and have B-layer hits (the loose requirement) [57, 58]. These identification criteria are based on several properties of the electron candidates, including calorimeter-based shower shapes, inner-detector track hits and impact parameters, and comparisons of calorimeter cluster energy to track momentum. Corrections for energy contributions due to pileup are included. For all but the $1\ell\gamma\gamma$ channel, electrons are also required to have $p_T > 20$ GeV and $|\eta| < 2.47$; for the $1\ell\gamma\gamma$ channel they are required to have $p_T > 15$ GeV and $|\eta| < 2.37$. These electrons are used in the overlap removal procedure that is described below, and to apply lepton selections and vetoes in the various analysis channels, in some cases with additional selections applied.

Photon candidates are reconstructed from energy clusters in the electromagnetic calorimeter [59] in the region $|\eta| < 2.37$, after removing the transition region between barrel and endcap calorimeters, $1.37 < |\eta| < 1.52$. Photons are classified as unconverted photons if they do not have tracks from a conversion vertex matched to the cluster, and as converted if they do [60]. Identification criteria are applied to separate photon candidates from π^0 or other neutral hadrons decaying into two photons [59]. Strict identification requirements based on calorimeter shower shapes are used to identify the so-called tight photons, which are used in the $1\ell\gamma\gamma$ analysis channel. In this case, photons are required to satisfy an isolation criterion based on the sum of the calorimeter energy in a cone of $\Delta R = 0.4$ centered on the direction of the candidate photon, minus the energy of the photon candidate itself and energy expected from pileup interactions. The resulting isolation transverse energy is required to be less than 2.45 GeV $+ 0.022 \times E_T^{\gamma}$, where E_T^{γ} is the candidate photon’s transverse energy. Photons are calibrated using comparisons of data

Table 1: List of generators used for the different processes. Information is given about the underlying-event tunes, the PDF sets and the perturbative QCD highest-order accuracy (LO, NLO, next-to-next-to-leading order, NNLO, and next-to-next-to-leading-log, NNLL) used for the normalization of the different samples.

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>Tune</th>
<th>PDF set</th>
<th>Cross-section order</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W/Z + \text{jets}$</td>
<td>SHERPA-2.2.1 [47]</td>
<td>Default</td>
<td>NNPDF3.0NNLO</td>
<td>NNLO</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>Powheg-Box v2 [49, 50] + PYTHIA-6.428 [53]</td>
<td>PERUGIA2012 [51]</td>
<td>CT10 [52]</td>
<td>NNLO +NNLL</td>
</tr>
<tr>
<td>Single top</td>
<td>Powheg-Box v1 or v2 + PYTHIA-6.428</td>
<td>PERUGIA2012</td>
<td>CT10</td>
<td>NNLO +NNLL</td>
</tr>
<tr>
<td>Diboson</td>
<td>SHERPA-2.2.1</td>
<td>Default</td>
<td>NNPDF3.0NNLO</td>
<td>NLO</td>
</tr>
<tr>
<td>$t\bar{t} + X$</td>
<td>MadGraph-2.2.2 [38] + PYTHIA-8.186 [39]</td>
<td>A14 [40]</td>
<td>NNPDF2.3</td>
<td>NLO</td>
</tr>
<tr>
<td>4 top quarks</td>
<td>MadGraph5_aMC@NLO-2.2.1 + HERWIG++-2.7.1</td>
<td>UEEE5 [54]</td>
<td>CT10</td>
<td>NLO</td>
</tr>
<tr>
<td>Wh, Zh</td>
<td>PYTHIA-8.186+EVTGEN [48]</td>
<td>A14</td>
<td>NNPDF2.3</td>
<td>NLO</td>
</tr>
</tbody>
</table>
with MC simulation [57] and required to have $E_T > 25$ GeV. For both the electrons and photons, additional criteria are applied to remove poor quality or fake electromagnetic clusters resulting from instrumental problems.

Muon candidates are reconstructed from matching tracks in the inner detector and muon spectrometer. They are required to meet medium quality and identification criteria and to be isolated, as described in Ref. [61], and to have $p_T > 20$ GeV ($p_T > 10$ GeV for the $1\ell\gamma\gamma$ analysis) and $|\eta| < 2.5$. These muons are used in the overlap removal procedure and to apply lepton selections and vetoes in the various analysis channels, in some cases with additional selections applied. Events containing muons from calorimeter punch-through or poorly measured tracks are rejected if any muon has a large relative q/p error, or $\sigma(q/p)/|q/p| > 0.2$, where q is the charge of the track and p is the momentum. Cosmic-ray muons are rejected after the muon–jet overlap removal by requiring the transverse and longitudinal impact parameters to be $|d_0| < 0.25$ mm and $|z_0 \sin \theta| < 0.5$ mm, respectively.

Jets are reconstructed from three-dimensional topological energy clusters [62] in the calorimeter using the anti-k_T jet algorithm [63] with a radius parameter of 0.4. Each topological cluster is calibrated to the electromagnetic scale prior to jet reconstruction. The reconstructed jets are then calibrated to the energy scale of stable final state particles\(^{\text{2}}\) in the MC simulation by a jet energy scale (JES) correction derived from $\sqrt{s} = 13$ TeV data and simulations [64]. Further selections are applied to reject jets within $|\eta| < 2.4$ that originate from pileup interactions by means of a multivariate algorithm using information about the tracks matched to each jet [64, 65]. Candidate jets are required to have $p_T > 20$ GeV and $|\eta| < 2.8$.

A jet is tagged as a b-jet by means of a multivariate algorithm called MV2c10 using information about the impact parameters of inner-detector tracks matched to the jet, the presence of displaced secondary vertices, and the reconstructed flight paths of b- and c-hadrons inside the jet [66–68]. Jets tagged as b-jets must have $|\eta| < 2.5$. Several operating points are available, corresponding to various efficiencies obtained in $t\bar{t}$ simulated events. The 77% efficiency point was found to be optimal for most SUSY models considered in this paper and is used in the analysis. This configuration corresponds to a background rejection of 6 for c-jets, 22 for τ-leptons and 134 for light-quark and gluon jets [66–68], estimated using $t\bar{t}$ simulated events.

The E_T^{miss} in the event is defined as the magnitude of the negative vector sum of the p_T of all selected and calibrated physics objects in the event, with an extra term added to account for soft energy in the event that is not associated with any of the selected objects. This soft term is calculated from inner-detector tracks matched to the primary vertex to make it more resilient to pileup contamination [69].

Overlaps between reconstructed objects are accounted for and removed in a prioritized sequence. If a reconstructed muon shares an inner-detector track with an electron, the electron is removed. Jets within $\Delta R = 0.2$ of an electron are removed. Electrons that are reconstructed within $\Delta R = 0.4$ of any surviving jet are then removed, except in the case of the $0\ell b\bar{b}$ channel, where $\Delta R = \min(0.4, 0.04 + 10 \text{ GeV}/p_T^e)$, thereby allowing a high-p_T electron to be slightly closer to a jet than $\Delta R = 0.4$. If a jet is reconstructed within $\Delta R = 0.2$ of a muon and the jet has fewer than three associated tracks or the muon energy constitutes most of the jet energy, then the jet is removed. Muons reconstructed within a cone of size $\Delta R = \min(0.4, 0.04 + 10 \text{ GeV}/p_T^\mu)$ around the axis of any surviving jet are removed. If an electron (muon) and a photon are found within $\Delta R = 0.4$, the object is interpreted as electron (muon) and the overlapping photon is removed from the event. Finally, if a jet and a photon are found within $\Delta R < 0.2$, the object is

\(^{2}\) Stable particles in the MC simulation event record are those that have a lifetime τ such that $c\tau > 10$ mm. Jets of this kind are referred to as particle jets.
interpreted as photon and the overlapping jet is removed from the event; otherwise, if $\Delta R < 0.4$, the object is interpreted as a jet and the overlapping photon is discarded.

5 Kinematic requirements and event variables

Different analysis channels’ signal regions are optimized to target different mass hierarchies of the particles involved. The event selection criteria are defined on the basis of kinematic requirements for the objects described in the previous section and event variables are presented below. In the following, jets are ordered according to decreasing p_T, and p_T thresholds depend on the analysis channel.

- N_{jet} is the number of jets with $|\eta| < 2.8$ and p_T above an analysis-dependent p_T threshold.
- $N_{b\text{-jet}}$ is the number of b-jets with $|\eta| < 2.5$ with p_T above an analysis-dependent p_T threshold.
- $\Delta \eta_{\ell\ell}$ is the pseudorapidity difference between the two leading leptons in the case of multilepton channels.
- The minimum azimuthal angle $\Delta \phi_{\text{min}}^{Aj}$ between the p_T^{miss} and the p_T of each of the four leading jets in the event is useful for rejecting events with mismeasured jet energies leading to E_T^{miss} in the event, and is defined as:

$$\Delta \phi_{\text{min}}^{Aj} = \min_{i \leq 4} \Delta \phi(p_T^{\text{miss}}, p_T^{\text{jet}, i})$$

where $\min_{i \leq 4}$ selects the jet the minimizes $\Delta \phi$.
- The effective mass m_{eff} is defined as the scalar sum of the p_T of jets, leptons and E_T^{miss}, which aids in establishing the mass scale of the processes being probed, and is defined as:

$$m_{\text{eff}} = \sum_{i} N_{\text{jet}} p_{T,i}^{\text{jet}} + \sum_{j} N_{\ell\text{pton}} p_{T,j}^{\ell} + E_T^{\text{miss}}.$$
• m_T is the transverse mass formed by the E_T^{miss} and the leading lepton in the event. It is defined as:

$$m_T = \sqrt{2p_T^\ell E_T^{\text{miss}} (1 - \cos \Delta \phi(\ell, \vec{p}_T^{\text{miss}}))}$$

and is used to reduce the W+jets and $t\bar{t}$ backgrounds.

• $m_T^{b,\text{min}}$ is the minimum transverse mass formed by E_T^{miss} and up to two of the highest-p_T b-jets in the event, defined as:

$$m_T^{b,\text{min}} = \min_{i \leq 2} \left(\sqrt{2p_T^{b,\text{jet}i} E_T^{\text{miss}} (1 - \cos \Delta \phi(\vec{p}_T^{\text{miss}}, \vec{p}_T^{b,\text{jet}i}))} \right).$$

where $\min_{i \leq 2}$ selects the b-jet the minimizes the transverse mass.

• The lepton–E_T^{miss}–γ transverse mass m_W^{γ} is calculated with respect to the ith photon γ_i, ordered in terms of decreasing E_T, the E_T^{miss}, and the identified lepton ℓ. It is defined as:

$$\left(m_W^{\gamma i} \right)^2 = 2E_T^{\gamma i} E_T^{\text{miss}} (1 - \cos \Delta \phi(\gamma_i, \vec{p}_T^{\text{miss}})) + 2p_T^\ell E_T^{\text{miss}} (1 - \cos \Delta \phi(\ell, \vec{p}_T^{\text{miss}})) + 2E_T^{\gamma i} p_T^\ell (1 - \cos \Delta \phi(\gamma_i, \ell)).$$

• m_{CT} is the contransverse mass variable [70, 71] and is defined for the $b\bar{b}$ system as:

$$m_{CT} = \sqrt{2p_T^{b_1} p_T^{b_2} (1 + \cos \Delta \phi_{bb}),}$$

where $p_T^{b_1}$ and $p_T^{b_2}$ are transverse momenta of the two leading b-jets and $\Delta \phi_{bb}$ is the azimuthal angle between them. It is one of the main discriminating variables in selections targeting Higgs bosons decaying into b-quarks and is effective in suppressing the background from top-quark pair production.

• m_{T2} is referred to as the stransverse mass and is closely related to m_T. It is used to bound the masses of particles produced in pairs and each decaying into one particle that is detected and another particle that contributes to the missing transverse momentum [72, 73]. In the case of a dilepton final state, it is defined by:

$$m_{T2} = \min_{qr} \left[\max \left(m_T(\vec{p}_T^{\ell_1}, \vec{q}_T), m_T(\vec{p}_T^{\ell_2}, \vec{p}_T^{\text{miss}} - \vec{q}_T) \right) \right],$$

where \vec{q}_T is the transverse vector that minimizes the larger of the two transverse masses m_T, and $\vec{p}_T^{\ell_1}$ and $\vec{p}_T^{\ell_2}$ are the leading and subleading transverse momenta of the two leptons in the pair.

• The $1\ell\gamma\gamma$ variable $\Delta \phi_{W,h}$ is the azimuthal angle between the W boson and Higgs boson candidates. The W boson is defined by the sum of the lepton \vec{p}_T^ℓ and \vec{p}_T^{miss} vectors, and the Higgs boson by the sum of the transverse momentum vectors of the two photons.
6 Analysis strategy

The hadronic and leptonic decay modes of the W and Higgs bosons are divided into four independent and mutually exclusive analysis channels according to key features of the visible final state: hadronic decays of both the W and h ($0\ell b\bar{b}$, Section 6.1); hadronic h decays with leptonic W decays ($1\ell b\bar{b}$, Section 6.2); diphoton h decays with leptonic W decays ($1\ell\gamma\gamma$, Section 6.3); multilepton h decays via W, Z, τ and leptonic W decays ($t^\pm t^\pm$ and 3ℓ, Section 6.4). Event selections and background estimation methods specific to each analysis channel are described here, as well as the signal, control, and validation region definitions (SR, CR, and VR, respectively).

The expected SM backgrounds are determined separately for each SR, and independently for each channel, with a profile likelihood fit [74], referred to as a background-only fit. The background-only fit uses the observed event yield in the associated CRs as a constraint to adjust the normalization of the dominant background processes assuming that no signal is present. The CRs are designed to be enriched in specific background contributions relevant to the analysis, while minimizing the signal contamination, and they are orthogonal to the SRs. The inputs to the background-only fit for each SR include the number of events observed in the associated CR and the number of events predicted by simulation in each region for all background processes. They are both described by Poisson statistics. The systematic uncertainties, described in Section 7, are included in the fit as nuisance parameters. They are constrained by Gaussian distributions with widths corresponding to the sizes of the uncertainties and are treated as correlated, when appropriate, between the various regions. The product of the various probability density functions forms the likelihood, which the fit maximizes by adjusting the background normalization and the nuisance parameters. Finally, the reliability of the MC extrapolation of the SM background estimates outside of the control regions is evaluated in validation regions orthogonal to CRs and SRs.

6.1 Fully hadronic signature ($0\ell b\bar{b}$)

6.1.1 Event selection

The fully hadronic analysis channel exploits the large branching ratios for both $W \to q\bar{q}$ and $h \to b\bar{b}$. Missing transverse momentum triggers are used for the trigger selection for the analysis, with an offline requirement of $E_T^{\text{miss}} > 200$ GeV. Stringent event selections based on the masses of both the W and Higgs boson candidates, the presence of exactly two b-jets, and the kinematic relationships of the final-state jets and E_T^{miss}, are required in order to reduce the significant backgrounds from $t\bar{t}$, $Z +$ jets, $W +$ jets and single-top Wt production. Events are characterized by having four or five jets with $p_T > 30$ GeV, exactly two of which are identified as b-jets, and large m_{eff}, m_{CT}, and $m_{t}\text{min}$. Two signal regions are defined, specifically targeting either high (HM) or low (LM) $\tilde{\chi}^0_2$ and $\tilde{\chi}^\pm_1$ masses (SRHad-High and SRHad-Low, respectively). The selections used are shown in Table 2. The m_{eff} and $m_{t}\text{min}$ selections are particularly effective in reducing the $t\bar{t}$ contributions, which is the dominant background for both signal regions. The $Z +$ jets and single-top contributions are also significant, whereas the contribution from multijet production is found to be negligible and is not included. Control regions are used to constrain the normalizations of the $t\bar{t}$, $Z +$ jets, and Wt backgrounds with the data, while other processes are estimated using simulation. The $b\bar{b}$ invariant mass is required to be consistent with the Higgs boson mass, $105 < m_{b\bar{b}} < 135$ GeV, for all signal regions. All CRs and VRs select sidebands in the $m_{b\bar{b}}$ spectrum in order to remain orthogonal to the two SRs. These are further described in Section 6.1.2.
which reduces the
To validate the background prediction, three sets of validation regions are defined so as to be similar, but
The yields estimated with the background-only fit are reported in Table 3. The normalization factors are
The three control regions used for estimating the $t\bar{t}$ (CRHad-TT), $Z +$ jets (CRHad-Zj), and Wt (CRHad-ST) contributions are further divided into high-mass (HM) and low-mass (LM) categories in order to follow the
design of the SRs. These control regions are defined primarily by inverting the selections on $m_{b\bar{b}}$, m_{CT}, $m_{T,\text{min}}$, and by requiring the presence of a lepton in some cases. The $t\bar{t}$ background is estimated using
$m_{CT}, m_{T,\text{min}} < 140$ GeV and $m_{b\bar{b}} > 135$ GeV selections, while retaining the other SR requirements. This approach isolates the $t\bar{t}$ contribution while suppressing single-top and $Z +$ jets events, yielding a sample estimated to be 94% pure in $t\bar{t}$ events with negligible signal contamination. Background events from Wt are estimated by requiring exactly one lepton and $m_{CT} > 200$ GeV, $m_{T,\text{min}} > 180$ GeV, and $m_{b\bar{b}} > 195$ GeV, and relaxing the m_{eff} requirement for HM to $m_{\text{eff}} > 700$ GeV. The $Z +$ jets contribution is isolated using an opposite-sign, same-flavor, high-p_T 2ℓ requirement with $p_T^{\ell\ell} > 140$ GeV and $75 < m_{\ell\ell} < 105$ GeV, which reduces the $t\bar{t}$ contribution to this control region. These leptons are then treated as invisible when calculating the E_T^{miss}. Figure 2 shows the distribution of two key observables: the E_T^{miss} in the $t\bar{t}$ high-mass control region (Figure 2(a)) and the $m_{b\bar{b}}$ distribution in the $Z +$ jets low-mass control region (Figure 2(b)). The yields estimated with the background-only fit are reported in Table 3. The normalization factors are found to be 0.88 ± 0.10 (0.85 ± 0.04), 1.47 ± 0.32 (1.22 ± 0.35), and 0.54 ± 0.25 (0.57 ± 0.22) for $t\bar{t}$, $Z +$ jets, and Wt in the high-mass (low-mass) signal region, respectively. The errors include statistical and
systematic uncertainties. No diboson MC simulation events are found to contribute to the CRHad-ST regions.

To validate the background prediction, three sets of validation regions are defined so as to be similar, but
orthogonal, to the SRs. The $t\bar{t}$ VRs for each SR (VRHad-TT, for HM or LM) reverse the m_{CT} selections,
requiring $m_{CT} < 140$ (190) GeV for HM (LM), select the sideband $m_{b\bar{b}} > 135$ GeV (orthogonal to the SRs), but retain the SR selection on $m_{T,\text{min}}$. In order to validate the W and $Z +$ jets estimates, VRs are defined using sideband regions in the $m_{b\bar{b}}$ and $m_{q\bar{q}}$ spectra, either by vetoing the SR range in both of these variables, $m_{b\bar{b}} \notin [105, 135]$ GeV and $m_{q\bar{q}} \notin [75, 90]$ GeV (VRHad-SB for HM and LM), or by selecting the $m_{b\bar{b}} > 135$ GeV sideband and imposing a W mass requirement on the non-b-tagged dijet invariant mass, $75 < m_{q\bar{q}} < 90$ GeV (VRHad-bbhigh, for HM or LM).

Table 2: Signal region definitions for the fully hadronic $0\ell b\bar{b}$ analysis channel.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SRHad-High</th>
<th>SRHad-Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{lepton}</td>
<td>= 0</td>
<td>= 0</td>
</tr>
<tr>
<td>$N_{\text{jet}} (p_T > 30 \text{ GeV})$</td>
<td>$\in [4, 5]$</td>
<td>$\in [4, 5]$</td>
</tr>
<tr>
<td>$N_{b\text{-jet}}$</td>
<td>= 2</td>
<td>= 2</td>
</tr>
<tr>
<td>$\Delta\phi_{\text{min}}^{aj}$</td>
<td>> 0.4</td>
<td>> 0.4</td>
</tr>
<tr>
<td>$E_T^{\text{miss}} [\text{GeV}]$</td>
<td>> 250</td>
<td>> 200</td>
</tr>
<tr>
<td>$m_{\text{eff}} [\text{GeV}]$</td>
<td>> 900</td>
<td>> 700</td>
</tr>
<tr>
<td>$m_{b\bar{b}} [\text{GeV}]$</td>
<td>$\in [105, 135]$</td>
<td>$\in [105, 135]$</td>
</tr>
<tr>
<td>$m_{q\bar{q}} [\text{GeV}]$</td>
<td>$\in [75, 90]$</td>
<td>$\in [75, 90]$</td>
</tr>
<tr>
<td>$m_{CT} [\text{GeV}]$</td>
<td>> 140</td>
<td>> 190</td>
</tr>
<tr>
<td>$m_{T,\text{min}}^{b\bar{b}} [\text{GeV}]$</td>
<td>> 160</td>
<td>> 180</td>
</tr>
</tbody>
</table>

6.1.2 Background estimation

The background contributions to SRHad-High and SRHad-Low are estimated using fits to the data for $t\bar{t}$, $Z +$ jets, and single-top production in specially designed control regions.

The three control regions used for estimating the $t\bar{t}$ (CRHad-TT), $Z +$ jets (CRHad-Zj), and Wt (CRHad-ST) contributions are further divided into high-mass (HM) and low-mass (LM) categories in order to follow the design of the SRs. These control regions are defined primarily by inverting the selections on $m_{b\bar{b}}$, m_{CT}, $m_{T,\text{min}}$, and by requiring the presence of a lepton in some cases. The $t\bar{t}$ background is estimated using $m_{CT}, m_{T,\text{min}} < 140$ GeV and $m_{b\bar{b}} > 135$ GeV selections, while retaining the other SR requirements. This approach isolates the $t\bar{t}$ contribution while suppressing single-top and $Z +$ jets events, yielding a sample estimated to be 94% pure in $t\bar{t}$ events with negligible signal contamination. Background events from Wt are estimated by requiring exactly one lepton and $m_{CT} > 200$ GeV, $m_{T,\text{min}} > 180$ GeV, and $m_{b\bar{b}} > 195$ GeV, and relaxing the m_{eff} requirement for HM to $m_{\text{eff}} > 700$ GeV. The $Z +$ jets contribution is isolated using an opposite-sign, same-flavor, high-p_T 2ℓ requirement with $p_T^{\ell\ell} > 140$ GeV and $75 < m_{\ell\ell} < 105$ GeV, which reduces the $t\bar{t}$ contribution to this control region. These leptons are then treated as invisible when calculating the E_T^{miss}. Figure 2 shows the distribution of two key observables: the E_T^{miss} in the $t\bar{t}$ high-mass control region (Figure 2(a)) and the $m_{b\bar{b}}$ distribution in the $Z +$ jets low-mass control region (Figure 2(b)). The yields estimated with the background-only fit are reported in Table 3. The normalization factors are found to be 0.88 ± 0.10 (0.85 ± 0.04), 1.47 ± 0.32 (1.22 ± 0.35), and 0.54 ± 0.25 (0.57 ± 0.22) for $t\bar{t}$, $Z +$ jets, and Wt in the high-mass (low-mass) signal region, respectively. The errors include statistical and systematic uncertainties. No diboson MC simulation events are found to contribute to the CRHad-ST regions.
The number of events predicted by the background-only fit is compared with the data in the VRs in the upper panel of Figure 3. The pull, defined by the difference between the observed number of events (n_{obs}) and the predicted background yield (n_{pred}) divided by the total uncertainty (σ_{tot}), is shown for each region in the lower panel. No evidence of significant background mismodeling is observed in the VRs.

![Event Comparison](image.png)

Figure 2: Comparisons of data with SM predictions in $t\bar{t}$ and $Z + \text{jets}$ control regions for representative kinematic distributions: (a) E_{T}^{miss} for the $t\bar{t}$ high-mass control region and (b) m_{bb} for the $Z + \text{jets}$ low-mass control region. Predictions from simulation are shown after the background-only fit. The arrow indicates the selection on that variable used to define the corresponding CRs. The uncertainty bands include statistical and systematic uncertainties.
Table 3: Fit results in the control regions for the $0\ell b\bar{b}$ channel. The results are obtained from the control regions using the background-only fit. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by construction, where the negative error is truncated when reaching zero event yield.

<table>
<thead>
<tr>
<th>CR channels</th>
<th>CRHad-TT(HM)</th>
<th>CRHad-ST(HM)</th>
<th>CRHad-Zj(HM)</th>
<th>CRHad-TT(LM)</th>
<th>CRHad-ST(LM)</th>
<th>CRHad-Zj(LM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>102</td>
<td>17</td>
<td>39</td>
<td>695</td>
<td>23</td>
<td>78</td>
</tr>
<tr>
<td>Fitted bkg events</td>
<td>102 ± 10</td>
<td>17 ± 4</td>
<td>39 ± 6</td>
<td>695 ± 26</td>
<td>23 ± 5</td>
<td>78 ± 9</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>97 ± 11</td>
<td>3.7 ± 2.0</td>
<td>2.9 ± 2.4</td>
<td>659 ± 34</td>
<td>4.7 ± 2.3</td>
<td>10^{+12}_{-10}</td>
</tr>
<tr>
<td>Single top</td>
<td>$2.7^{+3.5}_{-2.7}$</td>
<td>10 ± 5</td>
<td>$0.8^{+0.9}_{-0.8}$</td>
<td>19 ± 19</td>
<td>15 ± 6</td>
<td>1.0 ± 0.9</td>
</tr>
<tr>
<td>$W+\text{jets}$</td>
<td>$0.5^{+0.6}_{-0.5}$</td>
<td>2.2 ± 1.1</td>
<td>0.0059 ± 0.0025</td>
<td>3.9 ± 3.1</td>
<td>2.8 ± 1.2</td>
<td>0.0059 ± 0.0026</td>
</tr>
<tr>
<td>$Z+\text{jets}$</td>
<td>1.1 ± 0.6</td>
<td>0.08 ± 0.07</td>
<td>32 ± 7</td>
<td>9.5 ± 3.2</td>
<td>0.09 ± 0.04</td>
<td>63 ± 17</td>
</tr>
<tr>
<td>$t\bar{t}+V$</td>
<td>0.63 ± 0.14</td>
<td>0.62 ± 0.16</td>
<td>2.0 ± 0.4</td>
<td>3.1 ± 0.5</td>
<td>0.80 ± 0.17</td>
<td>3.7 ± 0.6</td>
</tr>
<tr>
<td>Diboson</td>
<td>$0.08^{+0.14}_{-0.08}$</td>
<td>< 0.07</td>
<td>0.8 ± 0.8</td>
<td>1.16 ± 0.34</td>
<td>< 0.07</td>
<td>0.8 ± 0.5</td>
</tr>
</tbody>
</table>

Figure 3: Comparison of the predicted backgrounds with the observed numbers of events in the VRs associated with the $0\ell b\bar{b}$ channel. The normalization of the backgrounds is obtained from the fit to the CRs. The upper panel shows the observed number of events and the predicted background yield. All uncertainties are included in the uncertainty band. The lower panel shows the pulls in each VR.
6.2 Single-lepton plus di-b-jet signature ($1\ell b\bar{b}$)

6.2.1 Event selection

The events considered in the one-lepton plus two-b-jets channel are also recorded with the E_T^{miss} trigger, with an offline requirement of $E_T^{\text{miss}} > 200$ GeV. Events with exactly one electron or muon are selected if they also contain two or three jets with $p_T > 25$ GeV, two of which must be b-tagged. Discriminating variables are used to separate the signal from backgrounds, and include E_T^{miss}, m_T, the invariant mass of the two b-jets and their contransverse mass. The dominant SM background contributions in the $1\ell b\bar{b}$ channel are $t\bar{t}$, W+jets, and single-top (Wt channel) production. Three sets of signal regions are defined and optimized to target different LSP and next-to-lightest neutralino or chargino mass hierarchies. The three regions, labeled as SR1Lbb-Low, SR1Lbb-Medium, and SR1Lbb-High, are summarized in Table 4. SR1Lbb-Low provides sensitivity to signal models with a mass-splitting between LSP and next-to-lightest neutralino similar to the Higgs boson mass, while SR1Lbb-Medium and -High target mass-splittings between 150 and 250 GeV and above 250 GeV, respectively. The m_{CT} distribution of the $t\bar{t}$ background has an upper endpoint approximately equal to the top-quark mass, and thus this background is efficiently suppressed by requiring $m_{CT} > 160$ GeV in all regions. The W+jets background is reduced by selecting events with $m_T > 100$ GeV. The three SRs require $100 < m_T < 140$ GeV, $140 < m_T < 200$ GeV, and $m_T > 200$ GeV for SR1Lbb-Low, -Medium and -High, respectively. Finally, the $b\bar{b}$ invariant mass is required to be $105 < m_{b\bar{b}} < 135$ GeV, consistent with the Higgs boson mass, for all regions.

Table 4: Summary of the event selection for signal regions of the $1\ell b\bar{b}$ channel.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SR1Lbb-Low</th>
<th>SR1Lbb-Medium</th>
<th>SR1Lbb-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{lepton}</td>
<td>= 1</td>
<td>= 1</td>
<td>= 1</td>
</tr>
<tr>
<td>p_T^{ℓ} [GeV]</td>
<td>> 27</td>
<td>> 27</td>
<td>> 27</td>
</tr>
<tr>
<td>N_{jet} ($p_T > 25$ GeV)</td>
<td>= 2 or 3</td>
<td>= 2 or 3</td>
<td>= 2 or 3</td>
</tr>
<tr>
<td>$N_{b\text{-jet}}$</td>
<td>= 2</td>
<td>= 2</td>
<td>= 2</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 200</td>
<td>> 200</td>
<td>> 200</td>
</tr>
<tr>
<td>m_{CT} [GeV]</td>
<td>> 160</td>
<td>> 160</td>
<td>> 160</td>
</tr>
<tr>
<td>m_T [GeV]</td>
<td>$\in [100, 140]$</td>
<td>$\in [140, 200]$</td>
<td>> 200</td>
</tr>
<tr>
<td>$m_{b\bar{b}}$ [GeV]</td>
<td>$\in [105, 135]$</td>
<td>$\in [105, 135]$</td>
<td>$\in [105, 135]$</td>
</tr>
</tbody>
</table>

6.2.2 Background estimation

The contributions from the $t\bar{t}$, Wt, and W+jets background sources are estimated from MC simulation, but with yields that are normalized to data in dedicated CRs. The contribution from multijet production, where the lepton is misidentified as a jet or originates from a heavy-flavor hadron decay or photon conversion, is found to be negligible and neglected in the following. The remaining sources of background (single-top t- and s-channels, Z+jets, diboson, Zh, and Wh production), including their total yields, are estimated from simulation.

Three sets of CRs, CR1Lbb-TT, CR1Lbb-ST and CR1Lbb-Wj, are designed to estimate the $t\bar{t}$, Wt, and W+jets background processes, respectively. The acceptance for $t\bar{t}$ events is increased in CR1Lbb-TT by requiring $m_{CT} < 160$ GeV and inverting the selection on $m_{b\bar{b}}$. Three $t\bar{t}$ CRs are defined as a function of m_T mirroring the Low, Medium and High SR selections. Contributions from W+jets events are estimated
using a common CR1Lbb-Wj for all SRs, where events are required to have $40 < m_T < 100$ GeV and $m_{bb} < 80$ GeV. CR1Lbb-ST is designed to be orthogonal to the three CR1Lbb-TT regions and CR1Lbb-Wj by requiring events to have $m_{CT} > 160$ GeV, $m_{bb} > 195$ GeV and $m_T > 100$ GeV.

The yields estimated with the background-only fit are reported in Table 5. The normalization factors are found to be between $0.89^{+0.21}_{-0.20}$ and 1.15 ± 0.13 for the three SRs’ $t\bar{t}$ estimates, $1.1^{+0.7}_{-1.1}$ for Wt and 1.4 ± 0.5 for $W+$ jets, where the errors include statistical and systematic uncertainties. Figure 4 shows representative comparisons of data with MC simulation for m_{bb}, m_T and E_T^{miss} distributions in $t\bar{t}$, $W+$ jets and single-top control regions. The data agree well with the SM predictions in all distributions.

To validate the background predictions, two sets of VRs are defined similarly but orthogonal to the SRs. VR1Lbb-onpeak regions are defined similarly to the three CR1Lbb-TT regions but requiring $105 < m_{bb} < 135$ GeV. VR1Lbb-offpeak requires $m_{CT} > 160$ GeV, m_{bb} below 95 GeV or in the range 145–195 GeV and $E_T^{miss} > 180$ GeV. The yields and pulls in each VR are shown in Figure 5 after the background-only fit. The data event yields are found to be consistent with background expectations.
Figure 5: Comparison of the predicted backgrounds with the observed numbers of events in the validation regions associated with the $1\ell b\bar{b}$ channel. The normalization of the backgrounds is obtained from the fit to the CRs. The upper panel shows the observed number of events and the predicted background yield. All uncertainties are included in the uncertainty band. The lower panel shows the pulls in each VR.

Table 5: Fit results in the control regions for the $1\ell b\bar{b}$ channel. The results are obtained from the control regions using the background-only fit. The category “Others” includes contributions from $W h$ production and $Z +$ jets. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by construction, where the negative error is truncated when reaching zero event yield.
6.3 Single-lepton plus diphoton signature (1ℓγγ)

6.3.1 Event selection

Events used in the single-lepton plus diphoton (1ℓγγ) channel were recorded with a diphoton trigger using a trigger-level requirement of $E_T > 35$ GeV and $E_T > 25$ GeV for the leading and subleading photons, respectively. For these events, the selection requires exactly one lepton (e or μ) with $p_T > 25$ GeV and exactly two photons. To achieve full trigger efficiency, the leading and subleading photons are required to have a minimum E_T of 40 GeV and 31 GeV, respectively. The diphoton invariant mass $m_{γγ}$, which is measured in the region of the Higgs boson mass with a resolution of approximately 1.7 GeV, is required to lie within the mass window $120 < m_{γγ} < 130$ GeV. This effectively rejects SM backgrounds without a Higgs boson in the final state, referred to as non-peaking backgrounds. These backgrounds, which include SM diphoton and $Vγγ$ ($V=W, Z$) production, vary slowly across the selected mass window and can be reliably estimated from sidebands above and below the narrow mass window assuming a flat distribution. Observables such as E_T^{miss}, m_T, $m^{Wγ_1}_T$, $m^{Wγ_2}_T$, $Δφ_{W,h}$ and the number of b-jets provide additional discrimination between signal and both the peaking backgrounds (containing a Higgs boson decaying into two photons) and the non-peaking backgrounds.

The dominant peaking background arises from Wh production, which can be difficult to distinguish from the signal, which itself includes both a W and a Higgs boson. After applying a series of selection criteria optimized to separate signal from both the peaking and non-peaking backgrounds (see Table 6), the resulting inclusive SR is subdivided into a region largely depleted of Wh backgrounds (SR1Lγγ-a) and a SR with a significant contribution from Wh production (SR1Lγγ-b).

<table>
<thead>
<tr>
<th>Variable</th>
<th>SR1Lγγ-a</th>
<th>SR1Lγγ-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_γ$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>$p_T^{γ}$ [GeV]</td>
<td>$> (40,31)$</td>
<td></td>
</tr>
<tr>
<td>N_{lepton}</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$p_T^{ℓ}$ [GeV]</td>
<td>> 25</td>
<td></td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 40</td>
<td></td>
</tr>
<tr>
<td>$Δφ_{W,h}$</td>
<td>> 2.25</td>
<td></td>
</tr>
<tr>
<td>$m_{γγ}$ [GeV]</td>
<td>$∈ [120, 130]$</td>
<td></td>
</tr>
<tr>
<td>N_{b-jet} ($p_T > 30$ GeV)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$m^{Wγ_1}_T$ [GeV]</td>
<td>$≥ 150$</td>
<td></td>
</tr>
<tr>
<td>$m^{Wγ_2}_T$ [GeV]</td>
<td>> 140</td>
<td>$∈ [80, 140]$</td>
</tr>
<tr>
<td>m_T [GeV]</td>
<td>> 110</td>
<td>< 110</td>
</tr>
</tbody>
</table>

6.3.2 Background estimation

Non-peaking backgrounds are estimated separately for SR1Lγγ-a and SR1Lγγ-b by measuring the event yields, per 10 GeV in $m_{γγ}$, in the lower and upper sidebands within $105 < m_{γγ} < 120$ GeV and $130 < m_{γγ} < 160$ GeV, respectively. The observation of 1 (15) event(s) in the sidebands around SR1Lγγ-a
(SR1Lγγ-b) leads to an expectation of $0.22 \pm 0.22 (3.3 \pm 0.9)$ non-peaking background events, with the uncertainty dominated by the number of events in the sideband data sample.

Peaking backgrounds are estimated from MC simulations of the production of the Higgs boson through gluon–gluon and vector-boson fusion, and of Higgs boson production in association with a W or Z boson. Production of a Higgs boson in association with a $t\bar{t}$ pair is also taken into account, although this contribution is suppressed by the requirement that the events contain no b-jets. A value of $(2.28 \pm 0.08) \times 10^{-3}$ is assumed for the $h \rightarrow \gamma\gamma$ branching ratio [75]. Production of Wh events, with a subsequent decay of the Higgs boson into two photons, is expected to account for approximately 90% of the peaking background in the two SRs. Altogether, a total of $0.14 \pm 0.02 (2.01 \pm 0.30)$ events are expected to arise from peaking backgrounds in SR1Lγγ-a (SR1Lγγ-b).

6.4 Same-sign dilepton and three-lepton signatures ($\ell^\pm\ell^\pm$, 3ℓ)

Two- or three-lepton (multilepton) signatures arise when the W boson produced in conjunction with the Higgs boson decays semileptonically and the Higgs boson itself decays into one of WW, ZZ or $\tau\tau$, and these in turn yield at least one other lepton in the final state. Final-state neutrinos and lightest neutralinos all contribute to sizable E_T^{miss} in multileptonic signal events. Two sets of signal regions, kinematically orthogonal, are defined according to the presence of either exactly two leptons with same-sign electric charge ($\ell^\pm\ell^\pm$ analysis), or exactly three leptons satisfying various requirements on lepton-flavor and electric-charge combinations (3ℓ analysis). The $\ell^\pm\ell^\pm$ and 3ℓ analyses share the same trigger. Events must pass a trigger selection that combines single- and two-lepton triggers into a logical OR, where trigger thresholds on lepton p_T between 8 and 140 GeV are applied in conjunction with trigger-specific lepton identification criteria. Selected leptons have offline requirements of $p_T > 25$ GeV to ensure that trigger efficiencies are maximal and uniform in the relevant phase space. For both analyses, events with additional leptons are removed, and a b-jet veto is applied such that there are zero b-jets with $p_T > 20$ GeV. Non-b-tagged jets are not vetoed, and are required in some signal regions to account for hadronic decays of intermediate particles (e.g. W bosons), or for the presence of initial-state radiation. Jets in both the $\ell^\pm\ell^\pm$ and 3ℓ signal regions are required to have $p_T > 20$ GeV and pass the quality and kinematic selections described in Section 4. The signal region optimization and background estimations are developed independently for $\ell^\pm\ell^\pm$ and 3ℓ events.

Two primary sources of background are distinguished in these analyses. The first category is the reducible background, which includes events containing at least one fake or non-prompt (FNP) lepton (referred to as fake background) and, for the $\ell^\pm\ell^\pm$ analysis only, events containing electrons with misidentified charge (referred to as charge-flip background). This background primarily arises from the production of top-quark pairs. The FNP lepton typically originates from heavy-flavor hadron decays in events containing top quarks, or W or Z bosons. Those are suppressed for the $\ell^\pm\ell^\pm$ and 3ℓ analyses by vetoing b-tagged jets, while hadrons misidentified as leptons, electrons from photon conversions, and leptons from pion or kaon decays in flight remain as other possible sources. Data-driven methods are used for the estimation of this reducible background in the signal and validation regions. The second background category is the irreducible background from events with two same-sign prompt leptons or at least three prompt leptons. It is estimated using simulation samples and is dominated by diboson (WZ and ZZ) production. Dedicated validation regions with enhanced contributions from these processes, and small signal contamination, are defined to verify the background predictions from the simulation.
Details of the estimates of both the reducible and irreducible backgrounds for each analysis are given in the following subsections.

6.4.1 $\ell^+\ell^-$ event selection and background estimation

Two signal regions are defined for the $\ell^+\ell^-$ analysis channel, requiring either exactly one jet (SRSS-j1) or two to three (SRSS-j23) jets. In both regions, events must satisfy $E_T^{\text{miss}} > 100$ GeV, while region-specific requirements are applied on the transverse mass m_T, the effective mass m_{eff}, the transverse mass m_{T2}, and the kinematic variable $m_{\ell j}(j)$, which in signal events provides an estimate of the visible mass of the Higgs boson candidate. The $\ell^+\ell^-$ signal region selections are summarized in Table 7.

Table 7: Summary of the event selections for the $\ell^+\ell^-$ signal regions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SRSS-j1</th>
<th>SRSS-j23</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \eta_{\ell\ell}$</td>
<td>< 1.5</td>
<td>-</td>
</tr>
<tr>
<td>$N_{\text{jet}} (p_T > 20$ GeV)</td>
<td>$= 1$</td>
<td>$= 2$ or 3</td>
</tr>
<tr>
<td>$N_{b-\text{jet}}$</td>
<td>$= 0$</td>
<td>$= 0$</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>m_T [GeV]</td>
<td>> 140</td>
<td>> 120</td>
</tr>
<tr>
<td>m_{eff} [GeV]</td>
<td>> 260</td>
<td>> 240</td>
</tr>
<tr>
<td>$m_{\ell j}(j)$ [GeV]</td>
<td>< 180</td>
<td>< 130</td>
</tr>
<tr>
<td>m_{T2} [GeV]</td>
<td>> 80</td>
<td>> 70</td>
</tr>
</tbody>
</table>

The reducible FNP background is estimated using the matrix method [76, 77]. The matrix method uses both relaxed and more stringent lepton identification criteria in order to isolate the contributions from FNP leptons in a given data sample. The two sets of identification criteria that are used are referred to as tight and loose. The matrix method relates the number of events containing prompt or FNP leptons to the number of observed events with tight or loose-but-not-tight leptons using the probability, $O(10^{-1}–10^{-2})$, for loose prompt or FNP leptons to satisfy the tight criteria. Inputs to the method are the probability for loose prompt leptons to satisfy the tight selection criteria, estimated using $Z \rightarrow \ell\ell$ events, and the probability for loose FNP leptons to satisfy the tight selection criteria, determined from data in SS control regions enriched in non-prompt leptons. Final yields for FNP backgrounds are validated in VRs. Figure 6(a) shows the E_T^{miss} distribution in the VR for the $\ell^+\ell^-$ channel in the case of electrons (VRSS-ee) and good agreement is found between data and predictions.

Charge misidentification is only relevant for electrons and the contribution of charge-flip events to the SRs and VRs is estimated using the data. The electron charge-flip probability is extracted in a $Z \rightarrow ee$ data sample using a likelihood fit which takes as input the numbers of same-sign and opposite-sign electron pairs observed in a 80–100 GeV electron-pair mass window. It is treated as a free parameter of the fit and it is found to be between 2×10^{-4} and 10^{-3} depending on the p_T and η of the electron. Sources of SM irreducible background arise from WZ and ZZ events and are evaluated using simulation.

The background estimates are validated in dedicated VRs defined for each signal region and referred to as VRSS-j1 and VRSS-j23. In VRSS-j1, events are required to pass all selections as in SRSS-j1 but for E_T^{miss}, required to be between 70 GeV and 100 GeV, and $m_{\ell j}(j) > 130$ GeV. No selections are applied on m_{eff} and m_{T2}, while m_T is required to be above 140 GeV. VRSS-j23 is equivalent to SRSS-j23, with m_T required to be between 65 GeV and 120 GeV and $m_{\ell j}(j)$ above 130 GeV. The total numbers of events observed in data
and predicted by the background estimation for the $\ell^+\ell^-$ VRs are shown in Figure 7, together with the pull estimates.

Figure 6: (a) E_T^{miss} distribution in the electron-type VRSS-ee for $\ell^+\ell^-$ channel (used to estimate FNP leptons background) and (b) E_T^{miss} distribution in the on-shell Z-boson CR for 3ℓ (used to estimate the WZ normalization).

Figure 7: Results of the likelihood fit extrapolated to the VRs associated with both the $\ell^+\ell^-$ and 3ℓ channels. The normalization of the backgrounds is obtained from the fit to the CRs. The upper panel shows the observed number of events and the predicted background yield. All uncertainties are included in the uncertainty band. The lower panel shows the pulls in each VR.
6.4.2 3ℓ event selection

Events in the 3ℓ signal regions are categorized according to flavor and charge-sign combinations of the leptons in the event. Appropriate selection criteria tailored to each region are applied in order to reject lepton-rich background processes while at the same time maximizing signal significance. The event selections applied in the 3ℓ signal regions are summarized in Tables 8 and 9. In different-flavor opposite-sign (DFOS) signal regions, two of the leptons are required to have the same flavor and same-sign (SFSS) electric charge (the SFSS lepton pair), while the third lepton (the DFOS lepton) must have different flavor and opposite charge to the other two leptons. The DFOS lepton and the SFSS lepton closest to it in Δφ (the near lepton) are taken to originate from the Higgs boson decay. The ΔR between these two leptons is called ΔR_{OS,near}, and their invariant mass, which in signal events gives an estimate of the Higgs boson visible mass, is called m_{ℓ_{DFOS}+ℓ_{near}}. The azimuthal angle between the two SFSS leptons is called Δφ_{SS}. In same-flavor opposite-sign (SFOS) signal regions, there must be at least one pair of leptons of the same flavor and with opposite-sign charge (the SFOS lepton pair). When only one SFOS pair exists, the invariant mass m_{ℓ_{min}^{T_{SFOS}}} must be greater than 20 GeV and lie outside the 81.2–101.2 GeV interval, to suppress low-mass resonances and Z-rich backgrounds. If two SFOS pairs exist, the chosen SFOS pair has a lower m_{ℓ_{min}^{T_{SFOS}}} for the third highest p_T lepton, and the invariant mass requirement is applied to this pair. The variable m_{ℓ_{min}^{T_{SFOS}}}, defined in analogy with m_{ℓ_{min}^{T}}^{T}, is also used to identify the unique transverse mass value obtained from the lepton not in the SFOS pair in events for which only one such pair exists. Both the DFOS and SFOS events are further separated into orthogonal signal regions, depending on whether at least one light jet of p_T > 20 GeV is present in the event or not. Region-dependent requirements are placed on E_T^{miss}, as well as on other kinematic variables.

Table 8: Summary of the event selection for DFOS 3ℓ signal regions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SR3L-DFOS-0J</th>
<th>SR3L-DFOS-1Ja</th>
<th>SR3L-DFOS-1Jb</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{jet} (p_T > 20 GeV)</td>
<td>= 0</td>
<td>> 0</td>
<td>> 0</td>
</tr>
<tr>
<td>N_{b-jet}</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>> 60</td>
<td>∈ [30, 100]</td>
<td>> 100</td>
</tr>
<tr>
<td>m_{ℓ_{DFOS}+ℓ_{near}} [GeV]</td>
<td>< 90</td>
<td>< 60</td>
<td>< 70</td>
</tr>
<tr>
<td>ΔR_{OS,near}</td>
<td>-</td>
<td>< 1.4</td>
<td>< 1.4</td>
</tr>
<tr>
<td>Δφ_{SS}</td>
<td>-</td>
<td>-</td>
<td>< 2.8</td>
</tr>
</tbody>
</table>

Table 9: Summary of the event selection for SFOS 3ℓ signal regions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>SR3L-SFOS-0Ja</th>
<th>SR3L-SFOS-0Jb</th>
<th>SR3L-SFOS-1J</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{jet} (p_T > 20 GeV)</td>
<td>= 0</td>
<td>= 0</td>
<td>> 0</td>
</tr>
<tr>
<td>N_{b-jet}</td>
<td>= 0</td>
<td>= 0</td>
<td>= 0</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td>∈ [80, 120]</td>
<td>> 120</td>
<td>> 110</td>
</tr>
<tr>
<td>m_{ℓ_{min}^{T}} [GeV]</td>
<td>> 110</td>
<td>> 110</td>
<td>> 110</td>
</tr>
</tbody>
</table>

The reducible FNP lepton background in the 3ℓ channel is dominated by t\bar{t} and Z + jets processes, and it is estimated using the same approach as for the ℓ±ℓ± analysis. The irreducible background is dominated by WZ production and is estimated using a dedicated control region. The normalization of the WZ background is constrained in this region to reduce systematic uncertainties due to the MC modeling and experimental uncertainties.
sources. The WZ CR uses a three-lepton selection in which a SFOS pair has an invariant mass in the Z peak region, $81.2 < m_{\ell\ell} < 101.2$ GeV, the E_T^{miss} is above 80 GeV, and a b-tagging veto is applied. The estimate from the background-only fit leads to a normalization factor of $1.11^{+0.13}_{-0.13}$ for the WZ background and the E_T^{miss} distribution in the CR is shown in Figure 6(b). Its validity is cross-checked by comparing the SM estimates with data from a VR (referred to as VR3L-offZ-highMET) where events are required to have E_T^{miss} above 120 GeV and $m_{\text{min}}^{\text{SFOS}}$ outside of the Z peak region.

The total number of events observed in data and predicted by the background estimation for the 3ℓ VR are shown in Figure 7, together with the pull estimates.

7 Systematic uncertainties

Several sources of experimental and theoretical systematic uncertainties in the signal and background estimates are considered in these analyses. Their impact is reduced through the normalization of the dominant backgrounds in the control regions defined with kinematic selections resembling those of the corresponding signal region. Experimental and theoretical uncertainties are included as nuisance parameters with Gaussian constraints in the likelihood fits, taking into account correlations between different regions. Uncertainties due to the numbers of events in the CRs are also included in the fit for each region.

Theory uncertainties for $t\bar{t}$ processes are dominant for the 0$\ell b\bar{b}$ and 1$\ell b\bar{b}$ analysis channels, ranging from 15% to 20% for the 1$\ell b\bar{b}$ channel to nearly 50% for the low-mass signal region (SRHad-Low) of the 0$\ell b\bar{b}$ analysis. Generator uncertainties are assessed by comparing Powheg+Pythia 6 with Sherpa 2.2.1, and the parton shower models are tested by comparing Powheg+Pythia 6 with Powheg+Herwig++. Scale variations are evaluated by varying the h_{damp} parameter between m_{top} and $2 \times m_{\text{top}}$, and the renormalization and factorization scales up and down by a factor of two. Systematic uncertainties in the contributions from single-top production also account for the impact of interference terms between single-resonant and double-resonant top-quark production. Statistical uncertainties are included via the control regions in the data by which the processes are normalized and the size of the simulation samples used for evaluating theoretical systematic uncertainties. Relaxed selections are used to reduce the statistical uncertainty of theory estimates of top-quark contributions. In particular, the m_{CT} selection is loosened for both 0$\ell b\bar{b}$ and 1$\ell b\bar{b}$, as are the $m_T^{\text{b,min}}$ and m_{eff} selections for the 0$\ell b\bar{b}$ channel. The Z + jets and W+jets modeling uncertainties are estimated using the nominal Sherpa 2.2.1 samples by considering different merging (CKKW-L) and resummation scales, PDF variations from the NNPDF30NNLO replicas, as well as the envelope of changes resulting from seven-point scale variations of the renormalization and factorization scales. The various components are added in quadrature.

Theory uncertainties in both the Wh production cross-section and the modeling of the Wh final state also contribute to the uncertainty of the peaking backgrounds in the $1\ell\gamma\gamma$ analysis. They are estimated by varying the nominal PDF error sets, the QCD factorization scale, the parameters associated with the underlying event and parton shower, and the NLO electroweak correction factors associated with the simulation of the Wh process. These variations lead to a fractional uncertainty of $\pm 5.5\%$ in the expected contribution of Wh production to the $1\ell\gamma\gamma$ SRs.

Theory uncertainties related to the estimation of the WZ background are among the most significant for the multilepton analysis channels ($\ell^+\ell^-$ and 3ℓ). The effects of PDF choice and the scale of the strong coupling constant, α_S, on the WZ background are assessed using the same procedure as described above
for scale variations in top-quark production processes: by varying the relevant parameters and measuring the impact on the quantities of interest.

The dominant detector-related systematic effects differ depending on the analysis channel. Experimental uncertainties related to the jet energy resolution are significant in the case of $1\ell b\bar{b}$, accounting for nearly 20% of the total systematic uncertainty on the background estimation in the SR1Lbb-Medium region. Uncertainties related to the jet energy scale contribute to approximately a 30% systematic uncertainty in the SRHad-High region. Uncertainties of the b-tagging efficiency and mistagging rates are subdominant for $1\ell b\bar{b}$ and $0\ell b\bar{b}$ channels, and are estimated by varying the η, p_T- and flavor-dependent scale factors applied to each jet in the simulation within a range that reflects the systematic uncertainty of the measured tagging efficiency and mistagging rates. The effects of experimental uncertainty in the $1\ell\gamma\gamma$ channel are dominated by uncertainties in the photon, lepton and jet energy scale and resolution. The uncertainty on the contribution from non-peaking background is dominated by uncertainties in the shape of the non-peaking background $m_{\gamma\gamma}$ distribution was found to be negligible. The $\ell^{\pm}\ell^{\pm}/3\ell$ channels are dominated in several signal regions by experimental systematic uncertainties related to the estimation of background contributions due to FNP leptons. These systematic uncertainties are evaluated with various studies including $Z \rightarrow \ell\ell$ efficiency comparisons, variations of kinematic selections, modifications to the definition of the control regions, and alternative trigger selections. For the $\ell^{\pm}\ell^{\pm}$ channel, these are the dominant uncertainties and have similar contributions from each source.

The dominant systematic uncertainties in the various signal regions are summarized in Table 10.

8 Results

No significant differences between the observed and expected yields are found in the search regions for each of the analysis channels considered. The results are translated into upper limits on contributions from physics processes beyond the SM (BSM) for each signal region and are used to set exclusion limits at the 95% confidence level (CL) on the common mass of the charginos and next-to-lightest neutralinos for various values of the LSP mass in the simplified model considered in the analysis.

Table 11 provides the event yields and SM expectation for the $0\ell b\bar{b}$ analysis channel in the two signal regions (SRHad-High, SRHad-Low) after the background-only fit. The errors shown are the statistical plus systematic uncertainties. Table 12 reports the observed number of events in the three SRs for the $1\ell b\bar{b}$ signature compared to the SM expectations. Good agreement is found between data and SM predictions for both $0\ell b\bar{b}$ signal regions and two of the three $1\ell b\bar{b}$ signal regions; SR1Lbb-Medium exhibits a mild excess. For the $1\ell\gamma\gamma$ channel, the expected SM backgrounds, broken down by source, are summarized along with their estimated uncertainties in Table 13. A mild excess of observed events relative to expected SM backgrounds is seen in each of the two signal regions, corresponding to p_0-values of 0.027 and 0.087 for SR1Lyy-a and SR1Lyy-b, respectively. Finally, Tables 14, 15 and 16 report the observed and predicted SM backgrounds for the various multilepton signal regions.

Table 17 summarizes the observed (S_{95}^{obs}) and expected (S_{95}^{exp}) 95% CL upper limits on the number of signal events and on the observed visible cross-section, σ_{vis}, for all channels and signal regions. Upper limits on contributions from new physics processes are estimated using the so-called model-independent fit. The CL_{s} method [78, 79] is used to derive the confidence level of the exclusion for a particular signal model; signal models with a CL_{s} value below 0.05 are excluded at 95% CL. When normalized to the integrated
Table 10: Dominant systematic uncertainties in the background estimates in the various signal regions, expressed in terms of number of events. Individual uncertainties can be correlated, and do not necessarily add up quadratically to the total background uncertainty. For the 3ℓ channel, numbers in parentheses indicate the results for the (b) signal region in each case.

0ℓbb channel

<table>
<thead>
<tr>
<th>Uncertainty of region</th>
<th>SRHad-High</th>
<th>SRHad-Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total background expectation</td>
<td>2.5</td>
<td>8</td>
</tr>
<tr>
<td>Total background uncertainty</td>
<td>±1.3</td>
<td>±4</td>
</tr>
<tr>
<td>Systematic, experimental</td>
<td>±0.9</td>
<td>±1.2</td>
</tr>
<tr>
<td>Systematic, theoretical</td>
<td>±0.7</td>
<td>±3</td>
</tr>
<tr>
<td>Statistical, MC samples</td>
<td>±0.5</td>
<td>±0.8</td>
</tr>
<tr>
<td>Statistical, $\mu_{TT,ST,Zj}$ scale-factors</td>
<td>±0.25</td>
<td>±0.5</td>
</tr>
</tbody>
</table>

1ℓbb channel

<table>
<thead>
<tr>
<th>Uncertainty of region</th>
<th>SR1Lbb-Low</th>
<th>SR1Lbb-Medium</th>
<th>SR1Lbb-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total background expectation</td>
<td>5.7</td>
<td>2.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Total background uncertainty</td>
<td>±2.3</td>
<td>±1.0</td>
<td>±1.2</td>
</tr>
<tr>
<td>Systematic, experimental</td>
<td>±1.3</td>
<td>±0.7</td>
<td>±0.6</td>
</tr>
<tr>
<td>Systematic, theoretical</td>
<td>±2.2</td>
<td>±0.9</td>
<td>±0.7</td>
</tr>
<tr>
<td>Statistical, MC samples</td>
<td>±1.1</td>
<td>±0.5</td>
<td>±0.6</td>
</tr>
<tr>
<td>Statistical, $\mu_{TT,ST,Wj}$ scale-factors</td>
<td>±0.8</td>
<td>±0.6</td>
<td>±1.3</td>
</tr>
</tbody>
</table>

1ℓγγ channel

<table>
<thead>
<tr>
<th>Uncertainty of region</th>
<th>SR1Lγγ-a</th>
<th>SR1Lγγ-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total background expectation</td>
<td>0.36</td>
<td>5.3</td>
</tr>
<tr>
<td>Total background uncertainty</td>
<td>±0.22</td>
<td>±1.0</td>
</tr>
<tr>
<td>Systematic, experimental</td>
<td>±0.018</td>
<td>±0.27</td>
</tr>
<tr>
<td>Systematic, theoretical</td>
<td>±0.008</td>
<td>±0.11</td>
</tr>
<tr>
<td>Statistical, MC samples</td>
<td>±0.006</td>
<td>±0.024</td>
</tr>
<tr>
<td>Statistical, non-peaking</td>
<td>±0.22</td>
<td>±0.9</td>
</tr>
</tbody>
</table>

1ℓγγ channel

<table>
<thead>
<tr>
<th>Uncertainty of region</th>
<th>SR3L-Dfos-0J</th>
<th>SR3L-Dfos-1Ja (b)</th>
<th>SR3L-Sfos-0Ja (b)</th>
<th>SR3L-Sfos-1J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total background expectation</td>
<td>2.05</td>
<td>8.1(1.7)</td>
<td>3.8(2.37)</td>
<td>11.4</td>
</tr>
<tr>
<td>Total background uncertainty</td>
<td>±0.98</td>
<td>±4 (±0.7)</td>
<td>±1.7 (±0.96)</td>
<td>±2.6</td>
</tr>
<tr>
<td>Systematic, experimental</td>
<td>±0.8</td>
<td>±4 (±0.5)</td>
<td>±1.7 (±0.8)</td>
<td>±2.0</td>
</tr>
<tr>
<td>Systematic, theoretical</td>
<td>±0.11</td>
<td>±0.25 (±0.16)</td>
<td>±0.15 (±0.22)</td>
<td>±1.5</td>
</tr>
<tr>
<td>Statistical, MC samples</td>
<td>±0.6</td>
<td>±1.2 (±0.4)</td>
<td>±0.6 (±0.4)</td>
<td>±0.9</td>
</tr>
<tr>
<td>Statistical, μ_{WZ} scale-factors</td>
<td>±0.022</td>
<td>±0.12 (±0.06)</td>
<td>±0.30 (±0.24)</td>
<td>±0.9</td>
</tr>
</tbody>
</table>
Table 11: Event yields and SM expectation for the $0\ell b\bar{b}$ channel after the background-only fit for the SRHad-High and SRHad-Low regions. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by construction, where the negative error is truncated when reaching zero event yield.

<table>
<thead>
<tr>
<th>SR channels</th>
<th>SRHad-High</th>
<th>SRHad-Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Fitted bkg events</td>
<td>2.5 ± 1.3</td>
<td>8 ± 4</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>1.1 ± 0.9</td>
<td>4 ± 4</td>
</tr>
<tr>
<td>Single top (Wt)</td>
<td>0.15 +0.16</td>
<td>0.44 ± 0.33</td>
</tr>
<tr>
<td>$W +$ jets</td>
<td>0.1 +0.3</td>
<td>1.0 ± 0.7</td>
</tr>
<tr>
<td>$Z +$ jets</td>
<td>1.0 ± 0.7</td>
<td>1.7 ± 1.0</td>
</tr>
<tr>
<td>$t\bar{t} + V$</td>
<td>0.09 ± 0.03</td>
<td>0.40 ± 0.08</td>
</tr>
<tr>
<td>Diboson</td>
<td>< 0.01</td>
<td>0.3 +0.4</td>
</tr>
</tbody>
</table>

Table 12: Event yields and SM expectation after the background-only fit in the $1\ell b\bar{b}$ channel for the SR1Lbb-Low, SR1Lbb-Medium, and SR1Lbb-High regions. The category “Others” includes contributions from three- and four-top production and SM Higgs processes. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by construction, where the negative error is truncated when reaching zero event yield.

<table>
<thead>
<tr>
<th>SR channels</th>
<th>SR1Lbb-Low</th>
<th>SR1Lbb-Medium</th>
<th>SR1Lbb-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Fitted bkg events</td>
<td>5.7 ± 2.3</td>
<td>2.8 ± 1.0</td>
<td>4.6 ± 1.2</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>3.4 ± 2.9</td>
<td>1.4 ± 1.0</td>
<td>1.1 ± 0.6</td>
</tr>
<tr>
<td>Single top (Wt)</td>
<td>1.4 +1.4</td>
<td>0.8 +0.9</td>
<td>1.2 ± 1.1</td>
</tr>
<tr>
<td>$W +$ jets</td>
<td>0.6 ± 0.4</td>
<td>0.20 ± 0.11</td>
<td>1.6 ± 0.6</td>
</tr>
<tr>
<td>$t\bar{t} + V$</td>
<td>0.10 ± 0.04</td>
<td>0.32 ± 0.09</td>
<td>0.54 ± 0.14</td>
</tr>
<tr>
<td>Diboson</td>
<td>0.12 +0.15</td>
<td>0.05 ± 0.03</td>
<td>0.08 ± 0.02</td>
</tr>
<tr>
<td>Others</td>
<td>0.10 ± 0.05</td>
<td>0.03 ± 0.01</td>
<td>0.04 ± 0.02</td>
</tr>
</tbody>
</table>

Table 13: Expected numbers of peaking and non-peaking SM background events in the $1\ell\gamma\gamma$ channel for SR1L$\gamma\gamma$-a and SR1L$\gamma\gamma$-b. Non-peaking-background uncertainty is dominated by the statistical uncertainty in the sideband fits. The peaking background uncertainties include both theoretical (production rate) and experimental (detector effect) contributions, as described in the text. The uncertainties in the Wh and Other peaking backgrounds are taken to be fully correlated. Also shown are the observed numbers of events in SR1L$\gamma\gamma$-a and SR1L$\gamma\gamma$-b.

<table>
<thead>
<tr>
<th>SR channels</th>
<th>SR1L$\gamma\gamma$-a</th>
<th>SR1L$\gamma\gamma$-b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Total bkg events</td>
<td>0.37 ± 0.22</td>
<td>5.3 ± 1.0</td>
</tr>
<tr>
<td>Wh background</td>
<td>0.09 ± 0.01</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>Other peaking backgrounds</td>
<td>0.04 ± 0.01</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>Non-peaking background</td>
<td>0.22 ± 0.22</td>
<td>3.3 ± 0.9</td>
</tr>
</tbody>
</table>
Table 14: Event yields and SM expectation for the $\ell^+\ell^-$ signal regions SRSS-j1 and SRSS-j23 after the background-only fit. The category ‘Rare’ includes contributions from triboson, three- and four-top production and SM Higgs processes. The errors shown are the statistical plus systematic uncertainties.

<table>
<thead>
<tr>
<th>SR channels</th>
<th>SRSS-j1</th>
<th>SRSS-j23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Fitted bkg events</td>
<td>6.7 ± 2.2</td>
<td>5.3 ± 1.6</td>
</tr>
<tr>
<td>FNP events</td>
<td>3.3 ± 2.1</td>
<td>1.8 ± 1.5</td>
</tr>
<tr>
<td>WZ</td>
<td>2.2 ± 0.5</td>
<td>1.9 ± 0.6</td>
</tr>
<tr>
<td>Rare</td>
<td>0.44 ± 0.13</td>
<td>0.73 ± 0.17</td>
</tr>
<tr>
<td>$tt + V$</td>
<td>0.12 ± 0.05</td>
<td>0.14 ± 0.05</td>
</tr>
<tr>
<td>WW</td>
<td>0.17 ± 0.03</td>
<td>0.51 ± 0.07</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.06 ± 0.03</td>
<td>0.07 ± 0.04</td>
</tr>
<tr>
<td>Charge-flip events</td>
<td>0.47 ± 0.07</td>
<td>0.27 ± 0.03</td>
</tr>
</tbody>
</table>

Table 15: Event yields and SM expectation after the background-only fit in the 3ℓ channel for the SR3L-SFOS-0Ja, SR3L-SFOS-0Jb and SR3L-SFOS-1J regions. The category “Higgs” includes contributions from tt+Higgs boson production. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by construction, where the negative error is truncated when reaching zero event yield.

<table>
<thead>
<tr>
<th>SR channels</th>
<th>SR3L-SFOS-0Ja</th>
<th>SR3L-SFOS-0Jb</th>
<th>SR3L-SFOS-1J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>0</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Fitted bkg events</td>
<td>3.8 ± 1.7</td>
<td>2.4 ± 1.0</td>
<td>11.5 ± 2.6</td>
</tr>
<tr>
<td>WZ</td>
<td>2.5 ± 1.2</td>
<td>2.0 ± 0.9</td>
<td>7.4 ± 2.3</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.10 ± 0.04</td>
<td>0.07 ± 0.02</td>
<td>0.29 ± 0.09</td>
</tr>
<tr>
<td>$tt + V$</td>
<td>0.09 ± 0.03</td>
<td>0.02 ± 0.01</td>
<td>1.9 ± 0.5</td>
</tr>
<tr>
<td>Tribosons</td>
<td>0.57 ± 0.29</td>
<td>0.16 ± 0.08</td>
<td>1.4 ± 0.4</td>
</tr>
<tr>
<td>Higgs SM</td>
<td>0.24 ± 0.25</td>
<td>0.07 ± 0.07</td>
<td>0.07 ± 0.04</td>
</tr>
<tr>
<td>FNP events</td>
<td>0.27 ± 0.31</td>
<td>0.11 ± 0.20</td>
<td>0.4 ± 0.5</td>
</tr>
</tbody>
</table>
Table 16: Event yields and SM expectation after the background-only fit in the 3ℓ channel for the SR3L-DFOS-0J, SR3L-DFOS-1Ja and SR3L-DFOS-1Jb regions. The category “Higgs” includes contributions from $t\bar{t}$+Higgs boson production. The errors shown are the statistical plus systematic uncertainties. Uncertainties in the fitted yields are symmetric by construction, where the negative error is truncated when reaching zero event yield.

<table>
<thead>
<tr>
<th>SR channels</th>
<th>SR3L-DFOS-0J</th>
<th>SR3L-DFOS-1Ja</th>
<th>SR3L-DFOS-1Jb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>2.1 ± 1.0</td>
<td>8.3 ± 3.8</td>
<td>1.7 ± 0.7</td>
</tr>
<tr>
<td>Fitted bkg events</td>
<td>0.18 ± 0.13</td>
<td>1.01 ± 0.27</td>
<td>0.54 ± 0.16</td>
</tr>
<tr>
<td>WZ</td>
<td>0.0017 ± 0.0012</td>
<td>0.06 ± 0.02</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.0013 ± 0.0013</td>
<td>0.79 ± 0.29</td>
<td>0.43 ± 0.16</td>
</tr>
<tr>
<td>$t\bar{t} + V$</td>
<td>0.52 ± 0.28</td>
<td>0.66 ± 0.22</td>
<td>0.23 ± 0.08</td>
</tr>
<tr>
<td>Tribosons</td>
<td>0.39 ± 0.15</td>
<td>0.1 ± 0.05</td>
<td>0.05 ± 0.04</td>
</tr>
<tr>
<td>Higgs SM</td>
<td>1.0 ± 0.9</td>
<td>5.6 ± 3.8</td>
<td>0.4 ± 0.6</td>
</tr>
<tr>
<td>FNP</td>
<td>0.7 ± 1.0</td>
<td>8.3 ± 3.8</td>
<td>1.7 ± 0.7</td>
</tr>
</tbody>
</table>

The luminosity of the data sample, results can be interpreted as corresponding to observed upper limits on σ_{vis}, defined as the product of the production cross-section, the acceptance and the selection efficiency of a BSM signal. The p_0-values, which represent the probability of the SM background alone to fluctuate to the observed number of events or higher, are also provided.

For the $0\ell b\bar{b}$ analysis channel, Figure 8 shows the distributions of E_T^{miss} and m_{bb} in the SRHad-High and SRHad-Low SRs, respectively. Figure 9 shows the data distributions of m_{CT} and E_T^{miss} for the $1\ell b\bar{b}$ analysis in the SR1Lbb-High and SR1Lbb-Medium SRs compared to the SM expectations. Figure 10 shows the $m_{\gamma\gamma}$ distribution, separately for SR1L$\gamma\gamma$-a and SR1L$\gamma\gamma$-b, before the final selection applied to $m_{\gamma\gamma}$. Observed and predicted distributions of $m_{jj(j)}$ (SRSS-j1) and m_{T2} (SRSS-j23) for the $\ell^{+}\ell^{-}$ signature are shown in Figure 11. The data agree well with the SM expectations in all distributions and for all channels, and no significant deviations are observed.

Figure 12(a) shows the observed and expected exclusion contours for the simplified models shown in Figure 1(a) for the $0\ell b\bar{b}$ analysis channel. The signal region (either SRHad-High or SRHad-Low) used for each hypothesis for the $\tilde{\chi}_1^\pm/\tilde{\chi}_2^0 - \tilde{\chi}_1^0$ mass difference is chosen according to which has better expected sensitivity. Experimental and theoretical systematic uncertainties, as described in Section 7, are applied to background and signal samples. Figure 12(b) shows the observed and expected exclusion contours obtained for the $1\ell b\bar{b}$ channel: in this case, a statistical combination of the results from the three signal regions is performed. Due to the large branching ratio of the Higgs boson into b-quark pairs, the sensitivity of the $0\ell b\bar{b}$ and $1\ell b\bar{b}$ channels is best at high masses of the chargino and next-to-lightest neutralinos, and exclusion limits up to 680 GeV are achieved for massless neutralinos.

Figure 12(c) shows the expected limits obtained for the $1\ell\gamma\gamma$ channel. The excess of events observed in this signal region precludes an exclusion limit, even when combining the two SRs. Exclusion limits for the $\ell^{\pm}\ell^{\pm}$ analysis, obtained with a statistical combination of the two signal regions, are shown in Figure 12(d). This channel is primarily sensitive at low $\tilde{\chi}_1^\pm/\tilde{\chi}_2^0$ mass values and slightly extends the observed exclusion for models with small mass difference between $\tilde{\chi}_1^\pm/\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$. Finally, the sensitivity of the 3ℓ channel is small compared to other analysis channels due in large part to not considering hadronic τ decay modes.
Table 17: From left to right, the observed 95% CL upper limits on the visible cross-sections σ_{vis}, the observed (S_{obs}^{95}) and expected (S_{exp}^{95}) 95% CL upper limits on the number of signal events with ±1σ excursions of the expectation, and the discovery p-value (p_0), truncated at 0.5.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>σ_{vis} [fb]</th>
<th>S_{obs}^{95}</th>
<th>S_{exp}^{95}</th>
<th>p_0-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRHad-Low</td>
<td>0.26</td>
<td>9.4</td>
<td>9.5$^{+3.3}_{-1.9}$</td>
<td>0.50</td>
</tr>
<tr>
<td>SRHad-High</td>
<td>0.10</td>
<td>3.6</td>
<td>4.3$^{+1.6}_{-1.0}$</td>
<td>0.50</td>
</tr>
<tr>
<td>SR1Lbb-Low</td>
<td>0.23</td>
<td>8.3</td>
<td>8.0$^{+3.3}_{-2.2}$</td>
<td>0.46</td>
</tr>
<tr>
<td>SR1Lbb-Medium</td>
<td>0.28</td>
<td>10.0</td>
<td>5.6$^{+2.9}_{-1.7}$</td>
<td>0.04</td>
</tr>
<tr>
<td>SR1Lbb-High</td>
<td>0.18</td>
<td>6.4</td>
<td>6.1$^{+3.1}_{-1.9}$</td>
<td>0.44</td>
</tr>
<tr>
<td>SR1L$\gamma\gamma$-a</td>
<td>0.15</td>
<td>5.5</td>
<td>3.2$^{+0.9}_{-0.1}$</td>
<td>0.03</td>
</tr>
<tr>
<td>SR1L$\gamma\gamma$-b</td>
<td>0.28</td>
<td>10.1</td>
<td>6.4$^{+2.6}_{-1.6}$</td>
<td>0.09</td>
</tr>
<tr>
<td>SRSS-j1</td>
<td>0.12</td>
<td>4.2</td>
<td>6.1$^{+2.7}_{-1.5}$</td>
<td>0.50</td>
</tr>
<tr>
<td>SRSS-j23</td>
<td>0.27</td>
<td>9.9</td>
<td>6.6$^{+3.4}_{-1.1}$</td>
<td>0.17</td>
</tr>
<tr>
<td>SR3L-SFOS-0Ja</td>
<td>0.08</td>
<td>3.0</td>
<td>4.4$^{+1.9}_{-1.3}$</td>
<td>0.47</td>
</tr>
<tr>
<td>SR3L-SFOS-0Jb</td>
<td>0.16</td>
<td>5.9</td>
<td>5.0$^{+2.0}_{-1.2}$</td>
<td>0.35</td>
</tr>
<tr>
<td>SR3L-SFOS-1J</td>
<td>0.26</td>
<td>9.2</td>
<td>9.4$^{+3.8}_{-2.5}$</td>
<td>0.50</td>
</tr>
<tr>
<td>SR3L-DFOS-0J</td>
<td>0.08</td>
<td>3.0</td>
<td>3.8$^{+1.4}_{-0.9}$</td>
<td>0.43</td>
</tr>
<tr>
<td>SR3L-DFOS-1Ja</td>
<td>0.25</td>
<td>9.0</td>
<td>9.2$^{+3.3}_{-2.0}$</td>
<td>0.50</td>
</tr>
<tr>
<td>SR3L-DFOS-1Jb</td>
<td>0.10</td>
<td>3.7</td>
<td>4.0$^{+1.6}_{-0.5}$</td>
<td>0.50</td>
</tr>
</tbody>
</table>

The observed and expected cross-section exclusion contours, based on the statistical combination of the 3ℓ SRs, are compared with those of other channels in Figure 13(a) and Figure 13(b) as a function of the $\tilde{\chi}_1/\tilde{\chi}_2$ masses for $m(\tilde{\chi}_2^0) - m(\tilde{\chi}_1^0) = 130$ GeV, and for a fixed value of the $\tilde{\chi}_1^0$ mass, respectively.

A summary of the exclusion contours from the analyses presented here is shown in Figure 14. Observed and expected contours as obtained from each channel are shown, with the exception of the 3ℓ analysis, which has no sensitivity. The overall expected sensitivity varies from $m(\tilde{\chi}_2^0/\tilde{\chi}_2^0) = 150$ GeV to $m(\tilde{\chi}_2^0/\tilde{\chi}_2^0) = 635$ GeV, including significant improvements compared to previous results towards large $m(\tilde{\chi}_1^0)$ masses near the kinematic limit of the processes considered. The gain in sensitivity is largely due to the increased center-of-mass energy and dataset size relative to Run 1, the improvements in the optimization of the signal and control region definitions, as well as the addition of the 0ℓbb analysis channel.
Figure 8: Data and SM predictions in SRs for the $0\ell b\bar{b}$ analysis for (a) E^miss_T in SRHad-High and (b) $m_{b\bar{b}}$ in SRHad-Low. All SRs selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. Two example SUSY models are superimposed for illustrative purposes.

Figure 9: Data and SM predictions in SRs for the $1\ell b\bar{b}$ analysis for (a) m_{CT} in SR1Lbb-High and (b) E^miss_T in SR1Lbb-Medium. All SRs selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. Example SUSY models are superimposed for illustrative purposes.
Figure 10: Distributions of $m_{\gamma\gamma}$ before the final requirement on $m_{\gamma\gamma}$ in (a) SR1L$\gamma\gamma$-a and (b) SR1L$\gamma\gamma$-b. The expected contributions from both the peaking and non-peaking backgrounds are shown as stacked colored histograms. Two example SUSY models are superimposed for illustrative purposes.
Figure 11: Observed and predicted distributions for (a) $m_{\ell jj}$ in SRSS-j1 and (b) m_{T2} in SRSS-j23. All SRs selections but the one on the quantity shown are applied. All uncertainties are included in the uncertainty band. An example SUSY model is superimposed for illustrative purposes.
Figure 12: The expected and observed exclusion for the $0\ell b\bar{b}$, $1\ell b\bar{b}$, $1\ell\gamma\gamma$, and $\ell^+\ell^-$ channels. Experimental and theoretical systematic uncertainties, as described in Section 7, are applied to background and signal samples and illustrated by the yellow band and the red dotted contour lines, respectively. The red dotted lines indicate the ±1 standard-deviation variation on the observed exclusion limit due to theoretical uncertainties in the signal cross-section.
Figure 13: The expected and observed cross-section exclusion as a function of the $\tilde{\chi}_2^0/\tilde{\chi}_1^0$ masses for all channels (a) for signal models with $m(\tilde{\chi}_2^0) - m(\tilde{\chi}_1^0) = 130$ GeV and (b) assuming $m(\tilde{\chi}_1^0) = 0$ GeV.
Figure 14: Comparison of the expected and observed exclusions for each analysis channel studied. Only the expected exclusion is shown for the 1ℓγγ channel since the observed exclusion does not appear due to the excess observed.
9 Conclusion

Results of a comprehensive search for the electroweak pair production of a chargino and a neutralino $p\bar{p} \rightarrow \tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ are presented, based on 36.1 fb$^{-1}$ of proton–proton collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the Large Hadron Collider. Final states are considered where the chargino decays into the lightest neutralino and a W boson, $\tilde{\chi}^\pm_1 \rightarrow \tilde{\chi}^0_1 W^\pm$, while the next-to-lightest neutralino decays into the lightest neutralino and a SM-like 125 GeV Higgs boson, $\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 h$. The search includes $0\ell b\bar{b}$, $1\ell b\bar{b}$, $1\ell\gamma\gamma$ and multilepton final states with large missing transverse momentum in order to maximize sensitivity to signals of new physics processes involving Wh and SUSY DM candidates. The searches based on final states containing b-jets ($0\ell b\bar{b}$ and $1\ell b\bar{b}$) provide unprecedented sensitivity to high-mass electroweak production for this benchmark scenario. The multilepton and $1\ell\gamma\gamma$ searches provide sensitivity in the region of low masses, which is more difficult to access. Crucially, exploiting the various branching ratios of the Higgs boson into bottom quarks, photons, and multileptons, and designing an overall strategy that benefits from the complementarity of the various search channels is essential for the wide sensitivity of this analysis. No evidence of new physics processes is observed and stringent limits are placed on the existence of electroweak production of SUSY particle pairs with significant improvements over previous searches for high $\tilde{\chi}^\pm_1 \tilde{\chi}^0_2$ masses. In the context of the considered SUSY model, masses of $\tilde{\chi}^\pm_1$ and $\tilde{\chi}^0_2$ smaller than 680 GeV are excluded at 95% confidence level for a massless neutralino.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC
(Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [80].
References

[70] D. R. Tovey,

[71] G. Polesello and D. R. Tovey,

[72] C. G. Lester and D. J. Summers,

A. Vallier, J.A. Valls Ferrer, T.R. Van Daalen, H. Van der Graaf, P. Van Gemmeren,
I. Van Vulpen, M. Vanadja, W. Vandelli, A. Vaniache, P. Vankov, R. Varzi,
E.W. Varnes, C. Varni, T. Varol, D. Varouchas, K.E. Varvell, G.A. Vasquez,
J.G. Vasquez, F. Vazeille, D. Vazquez Furelos, T. Vazquez Schroeder, J. Veatch,
V. Vecchio, L.M. Veloce, F. Veloso, S. Veneziano, A. Ventura, N. Venturi,
V. Vercesi, M. Verducci, C.M. Vergel Infante, C. Vergis, W. Verkerke, A.T. Vermeulen,
J.C. Vermeulen, M.C. Vetterli, N. Vix, A. Vicent, A. Viciano, J.A. Valls Ferrer,
T. Vickey, O.E. Vickey, Boeriu, G.H.A. Viehhauser, S. Viei, L. Vigna, M. Villa,
M. Villaplana Perez, E. Vilutci, M.G. Vinceti, V.B. Vinogradov, A. Vishwakarma,
C. Vitton, I. Vivarelli, S. Vlachos, M. Vogel, P. Vokac, G. Volpi,
S.E. von Buddenbrock, E. Von Toerne, V. Vorobel, K. Vorobej, M. Vos, J.H. Vossebeld,
N. Vranjes, M. Vranjes Milosavljevic, V. Vrba, M. Vreeswijk, T. Šifilgjo, R. Vuillermet,
I. Vukotic, T. Zelinić, L. Živkić, P. Wagner, W. Wagner-Kuhn, H. Wahlberg,
S. Wahrn, K. Wakamiya, V.M. Walbrecht, J. Walder, R. Walker, S.D. Walker,
J. Wang, J. Wang, P. Wang, Q. Wang, R.-J. Wang, R. Wang, S.M. Wang, W.T. Wang,
W. Wang, W. Wang, Y. Wang, Y. Wang, C. Wanotayaroj, A. Warburton,
C.P. Ward, D.R. Wardrobe, A. Washbrook, P.M. Watkins, A.T. Watson,
C. Weiser, P.S. Wells, T. Wenaas, T. Wengler, S. Wenig, N. Werme, M.D. Werner,
A.S. White, M.J. White, R. White, D. Whiteson, B.W. Whitmore, F.J. Wicke,
L.J. Wilkins, H.I. Williams, C. Willis, S. Willocq, J.A. Wilson, I. Wingert-Toering,
E. Winkels, F. Winklmeier, O.J. Winston, B.T. Winter, M. Wittgenstein,
M. Wobisch, A. Wolf, T.M.H. Wolf, R. Wolf, M.W. Wolter, H. Wolters,
V.S.W. Wong, N.L. Woods, S.D. Worm, B.K. Wosiek, K.W. Wozniak, K. Wright,
M. Wu, S.L. Wu, X. Wu, Y. Wu, T.R. Wyatt, B.M. Wynne, S. Xella, Z. Xi, D. Xu,
H. Xu, L. Xu, T. Xu, X. Xu, B. Yabsley, S. Yacoob, K. Yajima, D.P. Yallup,
Y. Yamaguchi, Y. Yamaguchi, T. Yamana, F. Yamane, M. Yamatani, T. Yamazaki,
Y. Yamazaki, Y. Yamazaki, Z. Yan, H.J. Yang, H. Yang, Y. Yang, Z. Yang,
W.-M. Yao, Y.C. Yap, Y. Yusi, E. Yatsenko, X. Ye, X. Ye, I. Yeletskikh,
E. Yildirim, K. Yorita, K. Yoshihara, C.J.S. Young, C. Young, J. Yu, J. Yu,
S. Yue, N. Zakharchuk, P. Yabu, G. Zacharis, T.A. Zabinski, E. Zaffaroni,
T. Zakareishvili, N. Zakharchuk, J. Zaliev, S. Zambito, D. Zaripov,
S.V. Zeilinger, C. Zeitnitz, G. Zemaityte, J.C. Zeng, Q. Zeng, O. Zenin,
D. Zerwas, M. Zgubic, D.F. Zhang, D. Zhang, F. Zhang, G. Zhang, G. Zhang,
Z. Zhang, L. Zhang, L. Zhang, M. Zhang, P. Zhang, R. Zhang, R. Zhang,
Z. Zhang, Z. Zhang, P. Zhao, Y. Zhao, Z. Zhao, A. Zhemchegov, Z. Zheng,
A. Zibell, D. Zieminska, N.I. Zimine, S. Zimmermann, Z. Zinonos, M. Ziolkowski,
G. Zobernig, A. Zoccoli, K. Zoch, T.G. Zorba, R. Zou, M. Zur Nedden,
L. Zwalinski.

1Department of Physics, University of Adelaide, Adelaide; Australia.
2Physics Department, SUNY Albany, Albany NY; United States of America.
3 Department of Physics, University of Alberta, Edmonton AB; Canada.
4(a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5 LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7 Department of Physics, University of Arizona, Tucson AZ; United States of America.
8 Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9 Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10 Physics Department, National Technical University of Athens, Zografou; Greece.
11 Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12 Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; (b) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (c) Department of Physics, Bogazici University, Istanbul; (d) Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Physics Department, Tsinghua University, Beijing; (c) Department of Physics, Nanjing University, Nanjing; (d) University of Chinese Academy of Science (UCAS), Beijing; China.
16 Institute of Physics, University of Belgrade, Belgrade; Serbia.
17 Department for Physics and Technology, University of Bergen, Bergen; Norway.
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19 Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22 Centro de Investigaciones, Universidad Antonio Nariño, Bogota; Colombia.
23 Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna; (b) INFN Sezione di Bologna; Italy.
24 Physikalisches Institut, Universität Bonn, Bonn; Germany.
25 Department of Physics, Boston University, Boston MA; United States of America.
26 Department of Physics, Brandeis University, Waltham MA; United States of America.
27 Transilvania University of Brasov, Brasov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara; Romania.
28 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
32 Department of Physics, University of Cape Town, Cape Town; (b) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
America.

105 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
106 Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.
107 Group of Particle Physics, University of Montreal, Montreal QC; Canada.
108 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.
109 Institute for Theoretical and Experimental Physics (ITEP), Moscow; Russia.
110 National Research Nuclear University MEPhI, Moscow; Russia.
111 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
112 Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
113 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
114 Nagasaki Institute of Applied Science, Nagasaki; Japan.
115 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
116 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.
117 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.
118 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.
119 Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
120 Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; Novosibirsk State University, Novosibirsk; Russia.
121 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.
122 Department of Physics, New York University, New York NY; United States of America.
123 Ohio State University, Columbus OH; United States of America.
124 Faculty of Science, Okayama University, Okayama; Japan.
125 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
126 Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
127 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.
128 Center for High Energy Physics, University of Oregon, Eugene OR; United States of America.
129 LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
130 Graduate School of Science, Osaka University, Osaka; Japan.
131 Department of Physics, University of Oslo, Oslo; Norway.
132 Department of Physics, Oxford University, Oxford; United Kingdom.
133 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.
134 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
135 Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.
136 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
137 Laboratório de Instrumentação e Física Experimental de Partículas - LIP; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; Departamento de Física, Universidade de Coimbra, Coimbra; Centro de Física Nuclear da Universidade de Lisboa, Lisboa; Departamento de Física, Universidade do Minho, Braga; Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain); Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica; Portugal.
138 Institute of Physics, Academy of Sciences of the Czech Republic, Prague; Czech Republic.
139 Czech Technical University in Prague, Prague; Czech Republic.
140 Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
141 Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
142 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
143 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
144(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
145 Department of Physics, University of Washington, Seattle WA; United States of America.
146 Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
147 Department of Physics, Shinshu University, Nagano; Japan.
148 Department Physik, Universität Siegen, Siegen; Germany.
149 Department of Physics, Simon Fraser University, Burnaby BC; Canada.
150 SLAC National Accelerator Laboratory, Stanford CA; United States of America.
151 Physics Department, Royal Institute of Technology, Stockholm; Sweden.
152 Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
153 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
154 School of Physics, University of Sydney, Sydney; Australia.
155 Institute of Physics, Academia Sinica, Taipei; Taiwan.
156(a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.
157 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
158 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
159 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
160 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
161 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.
162 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
163 Tomsk State University, Tomsk; Russia.
164 Department of Physics, University of Toronto, Toronto ON; Canada.
165(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON; Canada.
166 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
167 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
168 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
169 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
170 Department of Physics, University of Illinois, Urbana IL; United States of America.
171 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
172 Department of Physics, University of British Columbia, Vancouver BC; Canada.
173 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
175 Department of Physics, University of Warwick, Coventry; United Kingdom.
176 Waseda University, Tokyo; Japan.
Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.

Also at Louisiana Tech University, Ruston LA; United States of America.

Also at LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris; France.

Also at Manhattan College, New York NY; United States of America.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at National Research Nuclear University MEPhI, Moscow; Russia.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

Also at School of Physics, Sun Yat-sen University, Guangzhou; China.

Also at The City College of New York, New York NY; United States of America.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.

Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at TRIUMF, Vancouver BC; Canada.

Also at Universita di Napoli Parthenope, Napoli; Italy.

* Deceased