Collider physics at the intensity and energy frontier

The HL-LHC and beyond

Federico Meloni (DESY), on behalf of the ATLAS and CMS collaborations

28 November 2018
DISCRETE 2018, Vienna
Introduction

The success of the Standard Model

Standard Model Production Cross Section Measurements

ATLAS Preliminary
Run 1,2 $\sqrt{s} = 7,8,13$ TeV

Status: July 2018

Measurement of the W Boson Mass

- Uses 4.6 fb$^{-1}$ of 7 TeV data
- Huge amount of work since 2011 to understand detector response and modeling of kinematic quantities, e.g. lepton p_T, E_T miss
- Similar precision to best previous single experiment measurement (from CDF)
- Result consistent with SM expectation
- Further progress requires improved modeling

$$m_W = 80.370 \pm 0.019 \text{ GeV}$$

± 7 MeV (stat.)

± 11 MeV (syst.)

± 14 MeV (modeling)
Standard Model shortcomings

Even with such a successful description of Nature, a few, but major, pieces are missing in the puzzle:

• Neutrino masses (and flavour oscillation) not predicted
• Matter-antimatter imbalance
• Unification of forces
• No gravity
• Missing dark matter/energy candidates
• Hierarchy problem
• …

Dark Energy 68%

Dark Matter 27%

Ordinary Matter 5%
But...

CMS Preliminary

- **Leptoquarks**
 - LQ1(ee) x2
 - LQ1(μμ) x2
 - LQ2(ττ) x2
 - LQ2(μμ) + LQ1(ττ) β = 0.5
 - LQ3(μμ) x2
 - LQ3(ττ) x2
 - Single LQ1 (λ = 1)
 - Single LQ2 (λ = 1)

- **RS Gravitons**
 - RS1(μμ), k = 0.1
 - RS1(ττ), k = 0.1
 - RS1(ττ), k = 0.1

- **Heavy Gauge Bosons**
 - SSM Z'(ττ)
 - SSM Z'(μμ)
 - SSM Z'(ee) + Z'(μμ)
 - SSM W'(μμ)
 - SSM W'(ττ)
 - SSM Z'(bb)

- **Excited Fermions**
 - e* (M = Λ)
 - μ* (M = Λ)
 - q* (ag)
 - q* (qy) f = 1
 - b*

- **13 TeV**
- **8 TeV**

Multijet Resonances

- coloron(μμ) x2
- coloron(ττ) x2
- gluino(3) x2
- gluino(μμ) x2

Large Extra Dimensions

- dijets, Λ+ LL/RR
- dijets, Λ- LL/RR
- dimuons, Λ+ LLIM
- dimuons, Λ- LLIM
- dielectrons, Λ+ LLIM
- dielectrons, Λ- LLIM
- single e, Λ HnCM
- single μ, Λ HnCM
- inclusive jets, Λ+
- inclusive jets, Λ-

Compositeness

CMS Exotica Physics Group Summary – ICHEP, 2016
Where to look?

LHC (and future colliders) offer a unique place where to look directly for new particles.

Precision measurements of SM
- Each deviation could be an hint of new physics!

Direct BSM searches
- A plethora of kinematic regions and possible new resonances from heavy particles

Other focused experiments give alternative and fundamental opportunities!
Particle physics at colliders

Why?

Broad exploration potential

- target well justified BSM scenarios but also have sensitivity to the unknown

Flexibility

- if (indirect) hints of NP arise somewhere, need to be able to re-direct efforts

Guaranteed deliverables

- if not a discovery, precision measurements!

Physics at Colliders fulfils all the above conditions, so it’s important to guarantee a continuous progression in this direction with sufficient complementarity
(Possible) future colliders
Options for the next 30+ years

High Energy - LHC \(\sqrt{s} = 27 \text{ TeV} \), beyond 2038

FCC - hh \(\sqrt{s} = 100 \text{ TeV} \), beyond 2045 (after FCC-ee), up to 30/ab

ILC \(\sqrt{s} \approx 500 \text{ GeV} \) with staging at 250 GeV

CLIC three stages \(\sqrt{s} \approx 380 \text{ GeV}, 1.5 \text{ TeV} \) and 3 TeV for 500/fb, 1.5/ab and 3/ab respectively, data taking after HL-LHC for ~ 20 yrs

CepC >= two stages, \(\sqrt{s} \approx 91 \) and 240 GeV, data-taking 2030-2040 (upgradable to pp, with ep and HI options)

FCC - ee beyond 2045, 5 different stages and luminosities

LHeC \(E_e = 60 \text{ GeV} \), p from LHC, up to 1/ab, running at the same time as HL-LHC

FCC-eh \(E_e = 60 \text{ GeV} \) vs 50 TeV, up to 3/ab
The HL-LHC and the 2018 Yellow Report

$\sqrt{s} = 14$ TeV, up to 3000 or 4000 fb$^{-1}$ (300fb$^{-1}$ for LHCb)

The only facility approved so far, on which most studies have been made

• ATLAS, CMS and LHCb detectors upgrade well on-going

• Data taking: 2025-2038

• Yellow Report for EU strategy expected in December 2018 summarize studies and projections by experiments and theory community on SM&Top, Higgs, BSM, Heavy Flavor and Heavy Ions

ESPP update due for approval by CERN council in May 2020

• Feedback gathered and discussed at the HL-/HE-LHC Workshops
Yellow report studies

Some commonalities

Three main approaches:

• Full simulation
• Analysis with parameterized detector performance (e.g. DELPHES with up-to-date phase-2 detector performance)
• Projections using Run-2 signal and background samples scaled at 14 TeV

Harmonised treatment of detector and theory uncertainties evolution with time

• Agreement between experimental collaborations and theorists involved in the Yellow Report
• General “rule of thumb”: detector and theory/modelling uncertainties will be halved, MC statistics are supposed to be infinite
Outline

I will discuss a personal (arbitrary/incomplete) selection of physics goals that we can achieve by the end of HL-LHC and complementarities with other facilities.

Start with indirect searches

- Precision measurements in the electro-weak sector
- Characterisation of the Higgs boson and its potential

Close with direct searches

- Supersymmetry
- New resonances
- Simplified dark matter models
Precision physics

Weak mixing angle
W boson mass
Vector boson scattering
Higgs boson properties
Measurement of the Weak Mixing Angle

Measure the leptonic effective weak mixing angle ($\sin^2\theta_{\text{lept}}$) in dilepton events.

- Tension of about 3σ between the two most precise measurements (LEP and SLD)
- Minimizing the χ^2 value between the simulated data and template A_{FB} distributions in 72 dilepton mass and rapidity bins
- The analysis is done at the generator level

\[
\cos \theta^* = \frac{2(p_1^+ p_2^- - p_1^- p_2^+)}{\sqrt{M^2(M^2 + P_T^2)}} \times \frac{P_z}{|P_z|}
\]

\[
A_{FB} = \frac{N(\cos \theta^* > 0) - N(\cos \theta^* < 0)}{N(\cos \theta^* > 0) + N(\cos \theta^* < 0)}
\]
Measurement of the W boson mass

W boson mass measurement by ATLAS

- study potential of low pile-up data
- extended pseudo-rapidity range effect on decorrelation of PDF
- include PDF uncertainties from different sets

<table>
<thead>
<tr>
<th>\sqrt{s} [TeV]</th>
<th>Lepton acceptance</th>
<th>Uncertainty in m_W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CT10</td>
</tr>
<tr>
<td>14</td>
<td>$</td>
<td>\eta_\ell</td>
</tr>
<tr>
<td>14</td>
<td>$</td>
<td>\eta_\ell</td>
</tr>
<tr>
<td>27</td>
<td>$</td>
<td>\eta_\ell</td>
</tr>
<tr>
<td>27</td>
<td>$</td>
<td>\eta_\ell</td>
</tr>
<tr>
<td>14+27</td>
<td>$</td>
<td>\eta_\ell</td>
</tr>
</tbody>
</table>
Vector boson scattering

Electroweak production of a Z boson pair plus two jets

VBS is crucial for probing the mechanism of electroweak symmetry breaking in the Standard Model.

- At the HL-LHC, evidence of the EW-ZZjj processes becomes possible

Four lepton channel: two high-energy jets in the back and forward regions, with two vector bosons.

- Exploit the ZZ centrality

$$ZZ \text{ centrality} = \frac{|y_{ZZ} - (y_{j1} + y_{j2})/2|}{|y_{j1} - y_{j2}|}$$
Future colliders (FCC-ee)

<table>
<thead>
<tr>
<th>Observable</th>
<th>Measurement</th>
<th>Current precision</th>
<th>FCC-ee stat.</th>
<th>FCC-ee syst.</th>
<th>Dominant exp. error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_z) (keV)</td>
<td>(Z) Lineshape</td>
<td>91187500 ± 2100</td>
<td>5</td>
<td>< 100</td>
<td>Beam energy</td>
</tr>
<tr>
<td>(\Gamma_z) (MeV)</td>
<td>(Z) Lineshape</td>
<td>2495200 ± 2300</td>
<td>8</td>
<td>< 100</td>
<td>Beam energy</td>
</tr>
<tr>
<td>(R_l (\times 10^3))</td>
<td>(Z) Peak ((\Gamma_{had}/\Gamma_{lep}))</td>
<td>20767 ± 25</td>
<td>0.06</td>
<td>0.2 – 1</td>
<td>Detector acceptance</td>
</tr>
<tr>
<td>(R_b (\times 10^6))</td>
<td>(Z) Peak ((\Gamma_{bb}/\Gamma_{had}))</td>
<td>216290 ± 660</td>
<td>0.3</td>
<td>< 60</td>
<td>(g \rightarrow bb)</td>
</tr>
<tr>
<td>(N_v (\times 10^3))</td>
<td>(Z) Peak ((\sigma_{had}))</td>
<td>2984 ± 8</td>
<td>0.005</td>
<td>1</td>
<td>Lumi measurement</td>
</tr>
<tr>
<td>(\sin^2 \theta_W^{eff} (\times 10^6))</td>
<td>(A_{FB}^{\mu\mu}) (peak)</td>
<td>231480 ± 160</td>
<td>3</td>
<td>2 – 5</td>
<td>Beam energy</td>
</tr>
<tr>
<td>(1/\alpha_{QED}(m_z) (\times 10^3))</td>
<td>(A_{FB}^{\mu\mu}) (off-peak)</td>
<td>128952 ± 14</td>
<td>4</td>
<td>< 1</td>
<td>Beam energy</td>
</tr>
<tr>
<td>(\alpha_s(m_z) (\times 10^4))</td>
<td>(R_l)</td>
<td>1196 ± 30</td>
<td>0.1</td>
<td>0.4 – 1.6</td>
<td>Same as (R_l)</td>
</tr>
<tr>
<td>(m_w) (MeV)</td>
<td>WW Threshold scan</td>
<td>80385 ± 15</td>
<td>0.6</td>
<td>0.3</td>
<td>Beam energy</td>
</tr>
<tr>
<td>(\Gamma_w) (MeV)</td>
<td>WW Threshold scan</td>
<td>2085 ± 42</td>
<td>1.5</td>
<td>0.3</td>
<td>Beam energy</td>
</tr>
<tr>
<td>(N_v (\times 10^3))</td>
<td>(e^+e^- \rightarrow \gamma Z, Z \rightarrow \nu\nu, \mu\mu)</td>
<td>2920 ± 50</td>
<td>0.8</td>
<td>small</td>
<td>?</td>
</tr>
<tr>
<td>(\alpha_s(m_w) (\times 10^4))</td>
<td>(B_l = (\Gamma_{had}/\Gamma_{lep})_W)</td>
<td>1170 ± 420</td>
<td>2</td>
<td>small</td>
<td>CKM Matrix</td>
</tr>
<tr>
<td>(m_{top}) (MeV)</td>
<td>Top Threshold scan</td>
<td>173340 ± 760 ± 500</td>
<td>17</td>
<td>< 40</td>
<td>QCD corr.</td>
</tr>
<tr>
<td>(\Gamma_{top}) (MeV)</td>
<td>Top Threshold scan</td>
<td>?</td>
<td>45</td>
<td>< 40</td>
<td>QCD corr.</td>
</tr>
<tr>
<td>(\lambda_{top})</td>
<td>Top Threshold scan</td>
<td>(\mu = 1.28 ± 0.25)</td>
<td>0.10</td>
<td>< 0.05</td>
<td>QCD corr.</td>
</tr>
<tr>
<td>(ttZ) couplings</td>
<td>(\sqrt{s} = 365) GeV</td>
<td>± 30%</td>
<td>0.5 – 1.5%</td>
<td>< 2%</td>
<td>QCD corr.</td>
</tr>
</tbody>
</table>

Table credit: A. Blondel
Characterising the Higgs boson

Complementarity and availability of results

Based as much as possible on the knowledge gathered from most recent analyses

- projections from the coupling combination
- dedicated truth-smearing studies for key analyses

Collaboration with LHC Higgs cross section Working Group

- 14 TeV and 27 TeV
- evaluated theory systematics

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Couplings</td>
<td>✓✓✓</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>Differential xsec</td>
<td>✓✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Width</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CPV</td>
<td>✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Rare decays</td>
<td>✓✓✓</td>
<td>✓✓</td>
</tr>
<tr>
<td>Di-Higgs</td>
<td>✓✓✓</td>
<td>✓✓✓</td>
</tr>
<tr>
<td>BSM</td>
<td>✓✓</td>
<td>✓✓</td>
</tr>
</tbody>
</table>

Legend: Past studies, 2017 TDRs, 2018 YR

Latest results: ATLAS CMS
Higgs to pairs of muons
Couplings to second-generation fermions

- Opposite-charge muons with \(p_T > 15 \text{ GeV} \) and \(|\eta| < 2.5 \)
- Leading muon \(p_T > 25 \text{ GeV} \)
- \(110 < m_{\mu\mu} < 160 \text{ GeV} \)

Split the selected sample in subsets with different signal-to-background ratios

- a maximum likelihood fit to the di-muon invariant mass
- Systematic uncertainties are incorporated as nuisance parameters in the final fit

<table>
<thead>
<tr>
<th>Scoping Scenario</th>
<th>(\langle \mu \rangle)</th>
<th>Overall significance</th>
<th>(\Delta \mu) w/ syst. errors</th>
<th>(\Delta \mu) w/o syst. errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference</td>
<td>200</td>
<td>9.5</td>
<td>(\pm 0.13)</td>
<td>(\pm 0.12)</td>
</tr>
<tr>
<td>middle</td>
<td>200</td>
<td>9.4</td>
<td>(\pm 0.14)</td>
<td>(\pm 0.12)</td>
</tr>
<tr>
<td>low</td>
<td>200</td>
<td>9.2</td>
<td>(\pm 0.14)</td>
<td>(\pm 0.13)</td>
</tr>
</tbody>
</table>
Double Higgs production

Ultra-rare processes

Plan to perform a combination to probe the expected reach for di-Higgs

- Measure λ_{HHH} (and k_t)
- Combination with CMS crucial
- Exploit three decay channels: $bb\gamma\gamma$, $bb\tau\tau$ and bb

ATLAS Simulation

$\sqrt{s} = 14$ TeV, $L = 3000$ fb$^{-1}$

0.2 $< \lambda_{HHH}/\lambda_{HHH}^{SM} < 6.9$

- Limited sensitivity ($\sim 1\sigma$)
- Expect improvements and channel combination for YR
Higgs boson couplings
HL-LHC and beyond

CMS prospects for measuring Higgs boson couplings.

- Extrapolated from Run-2 results with 36 fb\(^{-1}\)
- Identical detector performances
- Two systematic uncertainty scenarios (Run-2 and halved)

Table: Higgs Couplings

<table>
<thead>
<tr>
<th>g_{Hxx}</th>
<th>FCC-ee</th>
<th>FCC-hh</th>
<th>FCC-eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>0.15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>0.20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Γ(_{H})</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γγ</td>
<td>1.5%</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td>Zγ</td>
<td>--</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td>13%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td>0.4%</td>
<td></td>
<td>0.5%</td>
</tr>
<tr>
<td>ττ</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cc</td>
<td>0.7%</td>
<td></td>
<td>1.8%</td>
</tr>
<tr>
<td>μμ</td>
<td>6.2%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>uu,dd</td>
<td>H→ργ?</td>
<td>H→ργ?</td>
<td></td>
</tr>
<tr>
<td>ss</td>
<td>H→φγ?</td>
<td>H→φγ?</td>
<td></td>
</tr>
<tr>
<td>ee</td>
<td>ee→H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH</td>
<td>30%</td>
<td>~3%</td>
<td>20%</td>
</tr>
<tr>
<td>inv, exo</td>
<td><0.45%</td>
<td>10^{-3}</td>
<td>5%</td>
</tr>
</tbody>
</table>

Table credit: A. Blondel
Beyond the Standard Model

Supersymmetry
New resonances
Searches for dark matter

Image credit xkcd: https://xkcd.com/1621/
Supersymmetry

Theoretically sound, predictive framework

But where is SUSY?

• Barbieri-Giudice 3% naturalness
 \[m(\tilde{g}) \lesssim 1000 \text{ GeV} \]
 \[m(\tilde{t}_1) \lesssim 500 \text{ GeV} \]

• LHC limits severely constraining these models

Is SUSY unnatural? Is it dead? Not really…

• Considering the electroweak fine-tuning \((\Delta_{EW}) \), SUSY is natural (3-10%) with:
 \[m(\tilde{g}) \lesssim 5-6 \text{ TeV} \]
 \[m(\tilde{t}_1) \lesssim 2-3 \text{ TeV} \]
 \[m(\tilde{q}) \lesssim 10-20 \text{ TeV} \]

• Need low \(\mu \sim 100-300 \text{ GeV} \)
Search for Higgsinos

One of the focuses of the HL-LHC programme

\[\tilde{\chi}_2^0, \tilde{\chi}_1^0, \tilde{\chi}_2^-, \tilde{\chi}_1^-, \tilde{\chi}_1^+, \tilde{\chi}_1^\pm \] production, \(\tan\beta = 5, \mu > 0 \)

Pure Higgsino

ATLAS Simulation Preliminary
\(\sqrt{s} = 14 \) TeV, 3000 fb\(^{-1}, \mu = 200 \)

All limits at 95% CL

Exploit ISR jet + \(E_T^{miss} \) + soft leptons

- Challenging lepton identification

Gap that needs to be filled!

- Mono photon from FSR? VBF?

Disappearing tracks (long-lived charginos)

- New reconstruction options

- Challenging tracking environment!

\[\tilde{\chi}_1^0 \]
The hunt for the natural spectrum

HE-LHC

Various projections available beyond the HL-LHC

Stop Mass [GeV]

- Stop (compressed)
- Stop
- Gluino (compressed)
- Gluino

σ [ab]

- 5σ (0.3 ab⁻¹)
- 5σ (1 ab⁻¹)
- 5σ (3 ab⁻¹)
- 95% CL (0.3 ab⁻¹)
- 95% CL (1 ab⁻¹)
- 95% CL (3 ab⁻¹)

Stop Mass [GeV]

- CLIC
- ILC/FCC-ee
- FCC-hh (3/ab)
- HE-LHC (3/ab)
- HL-LHC (3/ab)
- LHC (current)

σ [ab]

- Stop (compressed)
- Stop
- Gluino (compressed)
- Gluino

Stop Mass [GeV]

- Staus
- Sleptons (all)
- Higgsinos
- NLSP (C1/N2)

σ [ab]

- CLIC
- ILC/FCC-ee
- FCC-hh (3/ab)
- HE-LHC (3/ab)
- HL-LHC (3/ab)
- LHC (current)

JHEP04 (2014) 117

m_g [TeV]

- 5σ discovery

m_0 [TeV]

- 100 TeV, 3000 fb⁻¹
- 33 TeV, 3000 fb⁻¹
- 14 TeV, 3000 fb⁻¹
- 14 TeV, 300 fb⁻¹

Image credit: M. D’Onofrio
Heavy W prime

Search in tb channel

Projection assumes narrow width approximation from early Run-2 analyses.

- Studied dependency on uncertainty evolution

Heavy resonances at future colliders: the higher the energy, the better…
Dark Matter searches

Foreseen by full theories as SUSY but also searched with ‘simplified models’

Strategy: search for associated production with one of many SM tags:

- jet, photon, Z, single/double top, bottom, Higgs

ATLAS Simulation Preliminary

\[\sigma(pp \rightarrow t\bar{t} \rightarrow b\bar{b} V) \times BR(t\rightarrow bV) \] [pb]

- **Theory**
- **95% CL Exp. Limit**
- **Non-resonant model**
- **95% CL Exp. ± 1σ**
- **95% CL Exp. ± 2σ**

Mono-top+MET

CMS Projection

3.0 ab\(^{-1}\) (14 TeV)

- **with YR18 syst. uncert.**
- **with Run 2 syst. uncert.**
- **with stat. uncert. only**

Vector mediator, Dirac DM

\[g_q = 0.25, g_{DM} = 1.0 \]

Mono-Z+MET

\[\Omega h^2 = 0.12 \]
Four top quarks in 2HDM+a

Search in multi-lepton channel

2HDM+a models are considered

• type-II coupling structure
• the lightest CP-even state of the Higgs-sector, h, can be identified with the SM Higgs boson

Select at least two leptons with the same electric charge or at least three or more leptons

• Potential observations for a range of masses and mixings
• Adding the fully hadronic, semi-leptonic can further improve
Complementarity with Direct Detection

Recasting a di-lepton search for DM+top quark pairs

- Search for scalar/pseudoscalar mediator decaying to invisible
- Yukawa-like interactions

ATLAS Simulation Preliminary
All Limits at 90% CL

ATLAS
- Limit Run 2
 - $\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
 - Scalar mediator, Dirac DM, $g = 1.0$

ATLAS 5σ Discovery
- $\sqrt{s} = 14$ TeV, 3000 fb$^{-1}$, $t\bar{t}+\phi$
 - Scalar mediator, Dirac DM, $g = 1.0$

ATLAS Expected Limit
- $\sqrt{s} = 14$ TeV, 3000 fb$^{-1}$, $t\bar{t}+\phi$
 - Scalar mediator, Dirac DM, $g = 1.0$
Dark matter at the FCC-hh

Assume wino-like DM particles

- Extrapolation of mono-jet and disappearing track searches are expected to start covering the multi-TeV range
- Higgsino-like sensitivity just below the TeV
Summary

Several SM shortcomings require investigations that are expected to extend beyond the scope of the LHC.

I have presented some examples highlighting the reach of:

• Crucial SM precision measurements
• Direct searches for BSM phenomena

in the context of a variety of (possible) future collider facilities.

Other 50+ years of interesting physics lie ahead!
Thank you