Opportunities for Hadronization Measurements with Heavy-Flavor-Tagged Jets at LHCb

Kara Mattioli
University of Michigan

On behalf of the LHCb Collaboration

Santa Fe Jets and Heavy Flavor Workshop
January 28 - 30, 2019
Heavy-Flavor-Tagged Jets: Ideal Systems for Hadronization Studies

- Flavor tagging provides information about
 both the initial and final states of the hadronization process - information we have never had experimental access to in jets before!

- Unprecedented opportunities for hadronization measurements exist at LHCb, which has excellent heavy-flavor jet tagging and particle ID capabilities

In this talk:
- LHCb’s advantage for hadronization studies
- Possible measurements
- Implications for our understanding of hadronization

Kara Mattioli, University of Michigan
The Large Hadron Collider beauty (LHCb) Experiment

- Forward detector ($2 < \eta < 5$) designed to study decays of beauty and charm hadrons
LHCb Tracking

- Precision tracking achieved with silicon microstrip and straw tube detectors.
LHCb Tracking

- $\delta p/p = 0.5\%$ at low momentum to 1% at 200 GeV/c
LHCb Particle Identification

- Excellent Particle ID achieved with two Ring Imaging Cherenkov (RICH) detectors

Particle ID

- RICH 1
 - $2 < \eta < 4.4$
 - 2 - 60 GeV/c

- RICH 2
 - $2.8 < \eta < 5$
 - 15 - 100 GeV/c
LHCb Particle Identification

- Particle ID performance remains excellent even in high-multiplicity events.

Particle ID

RICH 1
2 < η < 4.4
2 - 60 GeV/c

RICH 2
2.8 < η < 5
15 - 100 GeV/c

Particle ID performance remains excellent even in high-multiplicity events.

Heavy Flavor Jet Tagging at LHCb

- The Secondary Vertex tagging (SV-tagger) algorithm finds secondary vertices within a jet cone and uses two boosted decision trees (BDTs) for flavor discrimination.

- BDT(bc|udsg) discriminates between heavy and light flavor jets, while BDT(b|c) discriminates between beauty and charm jets:

 - Simulation shows clearly distinguishable BDT distributions for each jet tag.
 - Tagging efficiencies measured in data: for jets with $p_T > 20$ GeV and $2.2 < \eta < 4.2$, $\varepsilon_{b\text{-jet}}$ is $\sim 65\%$ and $\varepsilon_{c\text{-jet}}$ is $\sim 25\%$, with a light-parton jet misidentification probability of 0.3%.

JINST 10, P06013 (2015)
Heavy Flavor Jet Tagging at LHCb: An Example in Data

BDT distribution from data for LHCb B + jet events

Projected 1D BDT distributions from 2D fit to data

Obtain yields of flavor-tagged jets
Selected Heavy-Flavor-Tagged Jet Results from LHCb

Z+b-jet cross section

\[\sigma_{Z+b}(p_T > 10 \text{ GeV}) \text{ [fb]} \]

\[\sigma_{Z+b}(p_T > 20 \text{ GeV}) \text{ [fb]} \]

\[\text{LHCb, } \sqrt{s} = 7 \text{ TeV} \]

- MCFM MSTW08 massive LO
- MCFM MSTW08 massless LO
- MCFM MSTW08 massless NLO
- Data_{stat}
- Data_{tot}

Simultaneous extraction of W+b-jet and W+c-jet yields

\[\text{Candidates/0.1} \]

\[\text{BDT(bcludsg)} \]

First observation of forward Z->bb production in pp collisions at } \sqrt{s} = 8 \text{ TeV}

\[\text{LHCb, } \sqrt{s} = 13 \text{ TeV} \]

- data
- \(t \bar{t} \)
- Wt
- Z+jets
- Lepton Mis-ID

Forward top pair production in the dilepton channel in pp collisions at } \sqrt{s} = 13 \text{ TeV}

\[\text{Candidates/0.3 GeV} \]

\[\text{Dijet Mass [GeV]} \]

\[\text{LHCb 8 TeV Signal Region} \]

- Data
- Z
- Total uncertainty

\[\text{LHCb 8 TeV Control Region} \]

- Data
- Z
- Total uncertainty

\[\text{PLB 776, 430-439 (2018)} \]

JHEP 08, 174 (2018)

JHEP 01, 064 (2015)

PRD 92, 052001 (2015)
Selected Heavy-Flavor-Tagged Jet Results from LHCb

Simultaneous extraction of W+b-jet and W+c-jet yields Z+b-jet cross section

Forward top pair production in the dilepton channel in pp collisions at $\sqrt{s} = 13$ TeV

First observation of forward $Z\rightarrow bb$ production in pp collisions at $\sqrt{s} = 8$ TeV

Still many avenues to explore with heavy-flavor-tagged jets at LHCb, including hadronization!
Heavy Flavor Jet Tagging at the LHC

LHC Run 1 ($\sqrt{s} = 7, 8$ TeV) Heavy-Flavor Jet Tagging for Jets with $p_T > 20$ GeV/c

<table>
<thead>
<tr>
<th></th>
<th>ATLAS1</th>
<th>CMS2</th>
<th>ALICE3</th>
<th>LHCb4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_{b\text{-jet}}$</td>
<td>70%</td>
<td>70%</td>
<td>None</td>
<td>65%</td>
</tr>
<tr>
<td>$\varepsilon_{c\text{-jet}}$</td>
<td>25-40%</td>
<td>None</td>
<td>None</td>
<td>25%</td>
</tr>
<tr>
<td>Mis-ID as light parton</td>
<td>1%</td>
<td>1.5%</td>
<td>N/A</td>
<td>0.3%</td>
</tr>
<tr>
<td>Hadron PID</td>
<td>None</td>
<td>None</td>
<td>$</td>
<td>\eta</td>
</tr>
</tbody>
</table>

LHCb is the only LHC experiment that has both b- and c-jet tagging capabilities \textit{and} hadron PID over a large range in both pseudorapidity and momentum.

1 JINST 11 P04008 (2016)
2 JINST 8 P04013 (2013)
3 JINST 3 S08002 (2008)
4 JINST 10 P06013 (2015)
LHCb’s Advantage for Hadronization Studies

- Excellent tracking and particle ID detectors allow for the identification of final-state hadrons in a fully reconstructed jet
- Forward acceptance gives access to a mix of quark and gluon jets
- Established techniques exist for tagging heavy-flavor jets with high purity
- Emphasis in studying the production and decays of heavy flavor hadrons makes it an ideal experiment to study how beauty and charm quarks hadronize
- Hadronization studies in heavy-flavor-tagged jets at LHCb would expand on recent work done at LHCb to study J/Ψ production in jets:

A heavy-flavor-tagged jet hadronization study would be complementary to the LHCb Z + jet hadronization study currently in progress, which preferentially selects light-quark jets

PRL 118, 192001 (2017)
Hadronization Measurements Accessible at LHCb

- Longitudinal momentum distribution of hadrons in a heavy-flavor-tagged jet

\[z = \frac{p_{jet} \cdot p_h}{|p_{jet}|^2} \]

- Transverse momentum distribution of hadrons in a heavy-flavor-tagged jet

\[j_T = \frac{|p_h \times p_{jet}|}{|p_{jet}|} \]

- Radial profile of hadrons in a heavy-flavor-tagged jet

\[r = \sqrt{(\phi_h - \phi_{jet})^2 + (y_h - y_{jet})^2} \]

- Number of heavy-flavor and light-flavor hadrons in the jet and their flavor composition

- Number of baryons and mesons in the jet

- Comparison of these observables between beauty and charm jets

\[\text{Suggestions for more observables are very welcome!} \]
• LHCb has collected 9.23 fb$^{-1}$ of data since 2010:

 • Subsets of Run 1 and Run 2 data indicate a lower bound of several million for the heavy-flavor-tagged jet yield
 - Yields likely to increase with improved tagging techniques

• Range of jet p_T for multidifferential studies:

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

- 2018 (6.5 TeV): 2.19 /fb
- 2017 (6.5+2.51 TeV): 1.71 /fb + 0.10 /fb
- 2016 (6.5 TeV): 1.67 /fb
- 2015 (6.5 TeV): 0.33 /fb
- 2012 (4.0 TeV): 2.06 /fb
- 2011 (2.5 TeV): 1.11 /fb
- 2010 (3.5 TeV): 0.04 /fb

LHCb Z+jet cross section

\[\text{JHEP 01, 033 (2014)} \]

\[p_T^{\text{jet}} > 10 \text{ GeV} \]

\[\sqrt{s} = 7 \text{ TeV Data} \]

LHCb

Data (stat.)

Data (tot.)

POWHEG + PYTHIA:

- MSTW08, $O(\alpha_s)$
- MSTW08, $O(\alpha_s^2)$
- CTEQ10, $O(\alpha_s^2)$
- NNPDF 2.3, $O(\alpha_s^2)$

LHCb Z+jet cross section

\[\frac{1}{\sigma} \frac{d\sigma}{dp_T^{\text{jet}}} \]

\[\text{[1/GeV]} \]

\[10^{-2} \]

\[10^{-1} \]

\[10^{-3} \]

\[10^{-4} \]

\[20 \]

\[40 \]

\[80 \]

\[100 \]

\[120 \]

\[140 \]

\[p_T^{\text{jet}} \text{ [GeV]} \]
Implications of Hadronization Studies with Heavy-Flavor-Tagged Jets

- Identifying final-state hadrons in fully-reconstructed, flavor-tagged jets will offer new insights into mechanisms of color neutralization in hadronization.

- All of the proposed studies in this talk can be done at LHCb with existing data within the next few years.

- We hope that the capability to measure identified final-state hadrons in a fully-reconstructed, flavor-tagged jet will encourage the theoretical community to calculate distributions for multiple hadrons in a jet.

 - Wealth of 1D and multi-dimensional projections possible to facilitate theoretical comparisons.

 - Suggestions for additional observables within b- and c-tagged jets are very welcome!

- Hadronization will be a major component of the Electron-Ion Collider physics program. Learning more about hadronization now will help the community refine its goals for hadronization measurements at a future Electron-Ion Collider.
Implications of Hadronization Studies with Heavy-Flavor-Tagged Jets

- Identifying final-state hadrons in fully-reconstructed, flavor-tagged jets will offer new insights into mechanisms of color neutralization in hadronization.

- All of the proposed studies in this talk can be done at LHCb with existing data within the next few years.

- We hope that the capability to measure identified final-state hadrons in a fully-reconstructed, flavor-tagged jet will encourage the theoretical community to calculate distributions for multiple hadrons in a jet.
 - Wealth of 1D and multi-dimensional projections possible to facilitate theoretical comparisons.
 - **Suggestions for additional observables within b- and c-tagged jets are very welcome!**

- Hadronization will be a major component of the Electron-Ion Collider physics program. Learning more about hadronization now will help the community refine its goals for hadronization measurements at a future Electron-Ion Collider.
Backup
LHCb Calorimetry

- Calorimeter system includes a Scintillating Pad Detector, a Preshower Detector, an electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL)

Calorimetry

\[
\frac{\sigma(E)}{E} = \frac{69\%}{\sqrt{E}} \pm 9\%
\]

HCAL:

\[
\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} \pm 1\%
\]

ECAL:

Scintillating Pad & Preshower Detectors

Shashlik scintillator/lead

JINST 3, S08005 (2008)
LHCb Muon System

- Muon ID achieved with five muon stations consisting of Gas Electron Multiplier (GEM) and 1380 Multi-Wire Proportional Chambers (MWPC) interleaved with iron absorbers.
Light-parton Jet Mis-ID with the SV-Tagger Algorithm

- Light-parton mis-ID probability studied in simulation and measured in data

- Mis-identification of a heavy-flavor jet as a light-parton jet is predominantly due to prompt tracks mis-reconstructed as displaced tracks to form a fake secondary vertex
Heavy Flavor Jet Tagging with the Topological Trigger

- Software trigger designed to identify decays of beauty hadrons
- Has been used as a b-jet tagger by requiring the tagged b-hadron to be inside a jet
- Jet tagging performance studied in both data and simulation:

JINST 10, P06013 (2015)

Kara Mattioli, University of Michigan
Calculation of SV-Tagger Efficiency

- Efficiency is calculated as the number of SV-tagged beauty and charm jets divided by the total number of beauty and charm jets.

- Number of SV-tagged beauty and charm jets is determined by fitting the 2D BDT distribution from data (see slide 8).

- Total number of beauty and charm jets is determined by fitting χ^2_{IP}: the difference in χ^2 of a primary interaction vertex reconstructed with and without the highest-pT track in the jet.

- The highest-pT track in light-parton jets usually originates from the primary vertex, while the highest-pT track in heavy-flavor jets usually originates from the beauty or charm hadron decay.

- Fit templates obtained from simulation and calibrated by comparison to data from $W +$ jet events (primarily light-parton jet dominated) to determine detector resolution effects.
The Secondary Vertex (SV)-Tagger Algorithm

- Requires that either a high-p_T muon or a beauty or charm hadron passes trigger requirement:
 - Muon candidate must have $p_T > 10$ GeV
 - Beauty or charm hadron candidate must have $p_T > 1.7$ GeV, and the difference in χ^2 of a primary vertex reconstructed with and without the considered track greater than 16

- For events with a candidate passing the trigger requirement, jets are clustered with the anti-k_T algorithm

- Tracks for secondary vertex reconstruction within the jet are required to have $p_T > 0.5$ GeV and a difference in χ^2 of a primary vertex reconstructed with and without the considered track greater than 16
 - No hadron PID is used - all particles are assigned a pion mass
 - Tracks are not required to be in the jet cone

- All possible two-track secondary vertices are reconstructed subject to the following cuts:
 - Distance of closest approach between tracks is less than 2mm
 - χ^2 of vertex fit < 10
 - Two-body mass is in the range 0.4 GeV < $M < M(B)$, where $M(B)$ is the nominal B^0 mass

JINST 10, P06013 (2015)
The Secondary Vertex (SV)-Tagger Algorithm

- All two-track secondary vertices with $\Delta R < 0.5$ relative to the jet axis are merged until none of the secondary vertices share tracks.

- The weighted average of the two-body secondary vertices is calculated with the inverse of the vertex χ^2 values as the weights. The weighted average is taken to be the position of the secondary vertex in the jet.

- The merged and weighted secondary vertices are required to satisfy the following:
 - $p_T > 2$ GeV
 - Significant spatial separation from primary vertex
 - Contain at most one track with $\Delta R > 0.5$ relative to jet axis
 - Pass quality cuts to suppress strange-hadron decays

- Information about secondary vertices is passed to two BDTs for flavor discrimination: BDT $(bc|udsg)$ and BDT $(b|c)$
Input to SV-Tagger BDTs

- Secondary vertex mass
- Secondary vertex corrected mass: \[M_{cor} = \sqrt{M^2 + p^2 \sin^2 \theta + p \sin \theta} \]
 - \(M \) is the invariant mass of the particles that form the secondary vertex, \(p \) is the momentum of the particles that form the secondary vertex, \(\theta \) is the angle between the momentum and direction of flight of the secondary vertex
- Transverse flight distance of the two-track secondary vertex closest to the primary vertex
- Fraction of the jet \(p_T \) carried by the secondary vertex
- \(\Delta R \) between the secondary vertex flight direction and the jet
- Number of tracks in the secondary vertex
- Number of secondary vertex tracks with \(\Delta R < 0.5 \) relative to the jet axis
- Net charge of the tracks that form the secondary vertex
- Flight distance \(\chi^2 \)
- Sum of all secondary vertex track \((\chi^2_P)^2 \): the difference in \(\chi^2 \) of a primary vertex reconstructed with and without a considered track
Additional Heavy-Flavor-Tagged Jet Results from LHCb

First observation of top quark production in the forward region

PRL 115, 112001 (2015)

First measurement of the charge asymmetry in $b\bar{b}$ production

$A_{C}^{bb} \equiv \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$

PRL 113, 082003 (2014)
Advances in Theoretical Approaches to Hadronization

Early 1970s
- Fragmentation functions introduced to describe the probability for a parton to fragment into a specific hadron as a function of z

 - PRD 4, 3388 (1971)

Late 1970s
- Dihadron fragmentation functions introduced to describe the probability of a single parton fragmenting into two specific hadrons

Early 1980s
- Transverse-momentum-dependent fragmentation functions introduced, adding a dependence on the transverse momentum of the produced hadron in addition to z

1990s
- Dihadron interference fragmentation function introduced

2010s
- Theoretical predictions for distributions of hadron-in-jet observables introduced

 - PRD 81, 074009 (2010), JHEP 1404, 147 (2014)