Measurement of ultra-low heating rates of a single antiproton in a cryogenic Penning trap

1. Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany
2. Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
3. GSI-Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
4. Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
5. Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
6. Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
7. CERN, 1211 Geneva 23, Switzerland
8. Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany
9. Ruprecht-Karls-Universität Heidelberg, 69117 Heidelberg, Germany
10. Helmholtz-Institut Mainz, 55099 Mainz, Germany
11. Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

(Dated: January 29, 2019)

We report on the first detailed study of motional heating in a cryogenic Penning trap using a single antiproton. Employing the continuous Stern-Gerlach effect we observe cyclotron quantum transition rates of $6(1)$ quanta/h and an electric field noise spectral density below $7.5(3.4) \times 10^{-20} \text{V}^2 \text{m}^{-2} \text{Hz}^{-1}$, which corresponds to a scaled noise spectral density below $8.8(4.0) \times 10^{-12} \text{V}^2 \text{m}^{-2}$, results which are more than two orders of magnitude smaller than those reported by other ion trap experiments.

Quantum control techniques applied to trapped charged particles, well-isolated from environmental influences, have very versatile applications in metrology and quantum information processing. For example, elegant experiments on co-trapped laser cooled ions in Paul traps have provided highly precise state-of-the-art quantum logic clocks [1], enabled the development of exquisite atomic precision sensors [2] and the implementation of quantum information algorithms applied with highly entangled ion-crystals [3]. Decoherence effects from noise driven quantum transitions, commonly referred to as anomalous heating [4, 5], affect the scalability of multi-ion systems, which would enable even more powerful algorithms. Trapped particles are also highly sensitive probes to test fundamental symmetries, and to search for physics beyond the standard model [6, 7]. The measurements are conducted in the cryogenic Penning trap using a single antiproton. Employing the continuous Stern-Gerlach effect we observe cyclotron quantum transition rates of $6(1)$ quanta/h and an electric field noise spectral density below $7.5(3.4) \times 10^{-20} \text{V}^2 \text{m}^{-2} \text{Hz}^{-1}$, which corresponds to a scaled noise spectral density below $8.8(4.0) \times 10^{-12} \text{V}^2 \text{m}^{-2}$, results which are more than two orders of magnitude smaller than those reported by other ion trap experiments.
state analysis trap of the BASE apparatus at CERN [24], which is shown in Fig. 1. The Penning trap is realized using a superconducting magnet at 1.945 T combined with a quadrupolar electrostatic potential provided from a set of five carefully designed cylindrical electrodes with an inner diameter of 3.6 mm [22]. The central ring electrode is made out of a Co/Fe alloy, which distorts the nearly homogeneous axial magnetic field to \(B_z = B_0 + B_2 \left(z^2 - \rho^2/2 \right) \), deliberately generating a magnetic inhomogeneity of \(B_2 = 272 \text{ kTm}^{-1} \). The trajectory of a single antiproton stored in a Penning trap is composed of three harmonic oscillator modes. The modified cyclotron motion at \(\nu_z \) and the magnetron motion at \(\nu_\perp \) are perpendicular to the magnetic field, while the particle oscillates along the magnetic field lines with axial frequency \(\nu_z \). For the BASE analysis trap, \(\nu_z \approx 17.845 \text{ MHz}, \nu_\perp \approx 10 \text{ kHz} \) and \(\nu_z \approx 675 \text{ kHz} \). The gold-plated OFHC electrodes are placed inside an indium-sealed vacuum chamber which is cooled to \(T \approx 6 \text{ K} \). Cryo-pumping provides an ultra-high vacuum with pressures \(< 3 \times 10^{-18} \text{ mbar} \) which enables storage times \(> 10^6 \text{ s} \) [23]. Radio frequency (rf) lines equipped with high order low-pass and band-pass filters as well as high-insulation switches are used for particle manipulation (Fig. 1b). The axial oscillation frequency \(\nu_z \) is measured by an image current detection system [24]. The detector’s time transient is processed with a Fast Fourier Transform (FFT) spectrum analyzer. Once cooled to thermal equilibrium, the particle signature appears as a dip in the resulting frequency spectrum [25] (see Fig. 1b). A least-squares fit of the recorded spectra yields the axial frequency \(\nu_z \). In the measurements reported here, we apply active electronic feedback cooling (see Fig. 1a) [26, 27], which enables measurements at low axial temperature \((T_\perp \approx 1.92(10) \text{ K}) \) and high axial frequency stability [19].

For explicit measurements of modified cyclotron transition rates we utilize the continuous Stern-Gerlach effect [20]. Here, the interaction of the particle’s magnetic moment \(\mu_z = \mu_+ + \mu_- + \mu_s \) with the strong magnetic inhomogeneity \(B_2 \) results in a magnetostatic axial energy \(E_{B,z} = -\mu_z \times B_2(z) \), where \(\mu_+ \) and \(\mu_- \) are the angular magnetic moments associated with the modified cyclotron and the magnetron mode, while \(\mu_s \) is the spin magnetic moment. As a result, the antiproton’s axial frequency \(\nu_z = \nu_{z,0} + \Delta \nu_z \) becomes a function of the radial quantum states:

\[
\Delta \nu_z(n_+, n_-, m_s) = \frac{\hbar \nu_+ B_z}{4\pi^2 m_\rho \nu_z} \left[n_+ + \frac{1}{2} + \frac{\nu_z}{\nu_+} \left(n_- + \frac{1}{2} + \frac{g_pm_s}{2} \right) \right].
\]

Transitions in the corresponding states \((m_s, n_+, n_-)\) to axial frequency shifts of \(\Delta \nu_{z,s} = 172(10) \text{ mHz} \), \(\Delta \nu_{z,+} = 62(4) \text{ mHz} \) and \(\Delta \nu_{z,-} = 40(3) \text{ mHz} \), respectively.

To determine the transition rate \(\zeta_\perp \) of the cyclotron motion we first prepare a particle at low radial energy with \(n_+ < 200 \) [28]. Then, we record sequences of axial frequency measurements \(\nu_{z,k} \) with an averaging time \(\tau_0 = 50 \text{ s} \). Subsequently, we evaluate the standard deviation \(\sigma_{\nu_z}(\tau) = \sigma \left(\langle \nu_{z,j+1} \rangle(\tau) - \langle \nu_{z,j} \rangle(\tau) \right) \), where \(\langle \nu_{z,j} \rangle(\tau) \)
represents the mean values of a sub-series of axial frequency measurements with an averaging time \(\tau = 1 \times \tau_0 \). A result of such an overlapping differential Allan deviation \(\sigma_{\nu_e}(\tau) \) is shown in Fig. 2 as blue filled circles. Various measured and simulated contributions to \(\sigma_{\nu_e}(\tau) \) are also plotted in Fig. 2. The contribution from voltage fluctuations \(\sigma_v(\tau) \) (dark red triangles) is extracted from simultaneous measurement of the voltage supply stability, as shown in Fig. 1. The contribution from white frequency measurement noise, \(\sigma_{\nu_{\text{FFT}}}(\tau) \propto \delta \nu_{\text{dip}}^{1/2} \text{SNR}^{-1/4} \) (dark red squares) is calculated \[14\], \(\delta \nu_{\text{dip}} \) being the linewidth of the axial frequency dip and SNR the signal-to-noise ratio (see Fig 1 b). At small averaging times \((\tau < 100 \text{s}) \), these two contributions dominate. Meanwhile, with long averaging times \((\tau > 250 \text{s}) \), \(\sigma_{\nu_e}(\tau) \) is dominated by transition rates \(\zeta_+ \) in the modified cyclotron mode,

\[
\sigma_{\nu_e}(\tau) \propto \sqrt{\sigma_v(\tau)^2 + \sigma_{\text{FFT}}(\tau)^2 + \tau (\Delta \nu_{\text{dip}}^2 + \zeta_+)}.
\]

(2)

By analyzing such data and comparing the Allan deviation to Monte-Carlo simulated noise-driven random walks, we extract an absolute cyclotron transition rate of \(\zeta_+ = 6(1) \text{ h}^{-1} \), see Fig. 2. Note that \(\zeta_+ \) describes a nearly undirected random walk. The observed transition rates can be related to the noise spectral density of the radial electric field \(S_E(\omega_+) \) at the modified cyclotron frequency. Considering first order transitions in a noise-driven quantum mechanical oscillator \[30\], cyclotron transitions rates are given by

\[
\zeta_+ = \frac{q^2 n_+}{2 \mu B \hbar \omega_+} S_E(\omega_+),
\]

(3)

where \(S_E(\omega_+) \) is the spectral density of electric field noise acting on the particle’s cyclotron motion. The average increase of \(n_+ \) is given by the heating rate \(d \bar{n}_+/dt = \zeta_+ \times 1/(2n_+) \) for \(n_+ \gg 1 \). Together with the determination of a lower limit for \(n_+ \) based on the continuous Stern-Gerlach effect \[31\] we obtain an upper limit for the electric field spectral density of \(S_E(\omega_+) \leq 7.5^{+3.4}_{-2}\times 10^{-20} \text{V}^2\text{m}^{-2}\text{Hz}^{-1} \). The absolute resolution of our axial frequency measurements is limited by environmental variations of temperature, cryo-liquid levels, and pressure, which impose uncertainties on the determination of both the cyclotron quantum number \(n_+ \) as well as the transition rate \(\zeta_+ \). Nevertheless, our upper limit for \(S_E(\omega_+) \) is far below the results reported by cryogenic Paul trap \[32,33\] and room temperature Penning-trap experiments \[21,39,40\]. The current best limits extracted from those experiments are \(S_E(\omega) = 2.4 \times 10^{-15} \text{V}^2\text{m}^{-2}\text{Hz}^{-1} \) \[5\] and \(S_E(\omega) = 8 \times 10^{-16} \text{V}^2\text{m}^{-2}\text{Hz}^{-1} \) \[21,40\], respectively. Fig. 3 a) displays the commonly used scaled electric field noise \(\omega S_E(\omega) \) which accounts for the \(1/\omega \)-dependence of the heating rate \[41,5\]. Our result \(\omega S_E(\omega) \leq 8.8^{+0.9}_{-0.7}\times 10^{-12} \text{V}^2\text{m}^{-2} \) sets an upper limit which is a factor of 1800 \[39\] lower than the best reported Paul trap heating rates and a factor of 230 lower than the best Penning trap \[21\]. Fig. 3 b) plots the heating rate \(d \bar{n}_+/dt \) for various experiments, which is in our case below 0.1 h\(^{-1}\). The corresponding energy increase \(dE/dt \), plotted in Fig. 3 c), is on the order of peV/s, demonstrating to our knowledge the highest energy stability of a particle in any ion trap experiment.

To further investigate the residual drive mechanism, we
measure transition rates $\zeta_+ (\rho_-)$ as a function of the particle’s magnetron radius ρ_-, thereby changing the trapping field at the particle position. We excite the magnetron mode and record series of axial frequency sequences $\Omega_k (\nu_+, \rho_-)$ for in total 7 different magnetron radii, thereby tracing a radial range of $6 \, \mu m \leq \rho_- \leq 65 \, \mu m$. The results of these measurements are displayed in Fig. 4. In Fig. 4 (a) we show the measured axial frequency fluctuation $\sigma_{\nu_+} (\nu_-, \rho_- = 250 \, s)$. For the data points displayed in Fig. 4 (b), we analyze the transition rate $\zeta_+ (\rho_-)$ of each dataset $\Omega_k (\nu_+, \rho_-)$ and determine the spectral density $S_V (\omega_+)$ of an equivalent effective voltage noise source present on each trap electrode:

$$S_V (\omega_+) = \Lambda^2 (\rho, z) S_V (\omega_+), \quad (4)$$

where $\Lambda (\rho, z)$ describes the relation between the electric field at the particle position $\vec{x} = (\rho, z)$ and the potential V_n created by the n-th electrode:

$$\Lambda^2 (\rho, z) = \sum_{n=1}^{5} \left(\frac{\partial V_n}{\partial \rho} \right)^2 \propto \rho^2, \quad (5)$$

for low cyclotron energies, $\rho \approx \rho_-$. The linear increase of $\sigma_{\nu_+} (\tau) \propto \rho_-$ observed in Fig. 4 (a) reflects a quadratic increase of transition rates $\zeta_+ \propto \rho_-^2$. (Eq. 2). This is expected from Eq. 4, assuming electrode voltage noise S_V as the dominant source of electric field fluctuations. We obtain $S_V = 225(54) \, pV \, Hz^{-1/2}$. Anomalous heating reported from Paul traps [4] scales with d^{-4}, d denoting the electrode-ion-distance. Since the variation of d is small ($\Delta d/d = 1/60$) for the considered magnetron radii, anomalous heating would result in a nearly constant electric field noise spectral density. Since a clear increase is observed in ζ_+, anomalous heating is ruled out as the dominant heating mechanism. Its effect is constrained to be below $S_E (\omega_+) \leq 7.5(3.4) \times 10^{-20} \, V^2 \, m^{-2} \, Hz^{-1}$.

In order to investigate contributions to S_V we consider the experimental setup depicted in Fig. 4. The effective parallel resistance of the axial detection system at the cyclotron frequency contributes about $1.5 \, pV \, Hz^{-1/2}$. The Johnson noise of the electrode RC-filters is below $1 \, pV \, Hz^{-1/2}$, the electrode Johnson noise is on the order of $10^{-3} \, pV \, Hz^{-1/2}$. None of these mechanisms can explain the observed voltage fluctuations. Field fluctuations arising from blackbody radiation are estimated to be $\omega_+ \times S_{E}^{(BB)} \approx 6 \times 10^{-14} \, V^2 \, m^{-2}$ [3] [11], which is two orders of magnitude lower than our limit of $\omega S_E (\omega) \leq 8.8 \pm 4.9 \times 10^{-12} \, V^2 \, m^{-2}$. A trapped ion polarizes neutral background gas atoms and thereby induces collisions described by the Langevin rate γ, which is proportional to the background gas density [35] [12]. From our antiproton lifetime measurement [28] we derived upper limits for the partial pressure of hydrogen $p_{\text{upper},H} < 1.2 \times 10^{-18}$ mbar and helium $p_{\text{upper},He} < 2.7 \times 10^{-18}$ mbar leading to $\zeta_+ < 4 \times 10^{-9} \, s^{-1}$. Voltage supply (UM1-14) noise at ν_+ is ruled out by independent measurements. Therefore we assume parasitic coupling of stray EMI noise onto the trap electrodes to be the dominant source of electric field fluctuations in our trap. A further improvement to achieve even lower heating rates which will enhance the sensitivity of our experiment will be subject of future experimental studies.

We acknowledge financial support of RIKEN Pioneering Project Funding, RIKEN FPR program, RIKEN JRA program, the Max-Planck Society, the CERN fellowship program, the EU (Marie Sklodowska-Curie grant agreement No. 721559) and the KAS/BMBF PhD fellowship program. We acknowledge support from CERN, in particular from the AD operation team.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed S_V</td>
<td>$225(54) , pV , Hz^{-1/2}$</td>
</tr>
<tr>
<td>Axial detection system</td>
<td>$1.5 , pV , Hz^{-1/2}$</td>
</tr>
<tr>
<td>RC filter stages</td>
<td>$< 1 , pV , Hz^{-1/2}$</td>
</tr>
<tr>
<td>Electrode Johnson noise</td>
<td>$\sim 3 \times 10^{-3} , pV , Hz^{-1/2}$</td>
</tr>
<tr>
<td>Blackbody radiation</td>
<td>$\omega_+ \times S_E (\omega_+) \approx 6 \times 10^{-14} , V^2 , m^{-2}$</td>
</tr>
<tr>
<td>Background pressure</td>
<td>$\zeta_+ < 4 \times 10^{-9} , s^{-1}$</td>
</tr>
</tbody>
</table>

TABLE I. Parasitic voltage fluctuation and heating rate contributions.