Lycoris: A large area beam telescope based on hybrid-less silicon sensors

Wu, Mengqing (DESY) et al

12 November 2018

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package 15: Upgrade of beam and irradiation test infrastructure.

Copyright © CERN for the benefit of the AIDA-2020 Consortium
Summary

First application of the SiD hybrid-less micro-strip sensor:
- sensor with its readout characterized;
- Lab test with first module
- various run conditions tested/verified, able to see signal;
- First beam test with first module with a reference device
 - Signal response verified in terms of beam spot location and a landau shape;
 - First study on external trigger;
 - retrigger events solution found;
 - Signal efficiency determined with various run conditions;

Outlook
- Pedestal shifting issue under study;
- Module characterizing method verified/controlled;
- Project delivery due in Jan 2019.

Introduction

The DESY II test beam facility provides e+e- beams with energies 1-6 GeV. A new large area beam telescope is being built to address many user demands for momentum measurements in a 1T solenoid.

Requirements
- At least 10cm along bending direction (y-axis);
- Limited space for upstream/downstream sensors to accommodate large Device Under Test: <= 3.5 cm (y-axis);
- Spatial point resolution minimum requirements:
 - \(\sigma_z = 10 \mu m \)
 - \(\sigma_y = 1 \) mm

Lab Test

Various data taking mode tested:
- **Calibration** – ADC/Charge response derived;
- **Pedestal** measurement – noise level determined;
 - Relative low noise level determined ~ 0.5 IC
 - Only Self-trigger mode tested:
- Noise Run with various setup, e.g. threshold scan
- Signal Run with 90Sr: Able to locate signal spot with relatively high threshold.

Results and Discussions

Using the self-trigger mode, external trigger are saved as time stamps:
- looping all channels with all events, one can get a time difference between self- and external triggers;
 - a timing cut can be determined for event selection;
 - a signal efficiency can be derived.

Self-trigger mode, with a lower threshold:
- events in correspondence with external triggers show a good landau behavior;
- SiN looks promising, but threshold dependent – room for improvement;
- Signal is ~2σ farther from the background only distribution.

SID Hybrid-less Micro-strip Sensor

KPIX Readout Chip
- 1024 channel, pitch adapter;
- Digitization: 13 bit ADC resolution
- Can accommodate input clock up to 100 MHz, 10 ns resolution;
- Two trigger modes: self- and external trigger;
- Power cycled.

Beam Profile
- 5 GeV, 5 MHz trigger rate
- Collimator 9x9 mm

Reference Device
- Hexagonal pixel sensor (~6mm pitch), same readout.

Test Beam

- Both self- and external trigger mode tested;
- In total ~2M Events accumulated;
- Calibration shows same ADC response as lab results
- Pedestal RMS shows lower noise level, because:
 - sensor held by the grounded cassette;
- Final production component: Cassette verified.

Paulo Breidenbach, D. R. Freytag, B. A. Reese (SLAC, CA, USA)

M. Wu (DESY, Hamburg, Germany)

U. Kraemer, M. Stanitzki, M. Wu (DESY, Hamburg, Germany)

M. Breidenbach, D. R. Freytag, B. A. Reese (SLAC, CA, USA)

S. Roelofs (La Hague, AL Delft, The Netherlands)