Heavy Ion and Fixed-Target Physics at ATLAS, CMS and LHCb

Giacomo Graziani (INFN Firenze) on behalf of the ATLAS, CMS and LHCb Collaboration

Les Rencontres de Physique de la Vallée d’Aoste
March 12, 2019
Heavy ions in ATLAS/CMS

- General purpose detectors (fully instrumented at mid-rapidities) can reconstruct heavy ion events, up to the most central PbPb collisions
- Exploiting the full potential of LHC luminosity

Large luminosities enabled first observations of rare processes. Noticeable examples: light-by-light scattering in PbPb (ATLAS), top production in pPb (CMS)
Heavy ions in ATLAS/CMS

- General purpose detectors (fully instrumented at mid-rapidities) can reconstruct heavy ion events, up to the most central PbPb collisions
- Exploiting the full potential of LHC luminosity

Noticeable examples: light-by-light scattering in PbPb (ATLAS), top production in pPb (CMS)
Tracking saturates for most central PbPb collisions.

- LHCb more suited for smaller collision systems.
- Still, crucial environment to understand cold nuclear matter effects and collectivity in small systems.

- Unique forward coverage at LHC, with excellent performance for heavy flavours down to 0 p_T.

- Sensitivity to small x (down to $\sim 10^{-5}$).

- Gluon saturation and to anti-shadowing region.
Fixed target collisions in LHCb

The System for Measuring Overlap with Gas (SMOG) allows to inject small amount of noble gas in the LHC vacuum

Turns LHCb into a fixed-target experiment!

Possible targets: **He, Ne, Ar**, and more in the future

Typical pressure $\sim 2 \times 10^{-7}$ mbar \Rightarrow up to $\mathcal{L} \sim 10^{30}$ cm$^{-2}$s$^{-1}$

Collisions at $\sqrt{s_{NN}} = 69-110$ GeV

($E_{beam} = 2.5 - 6.5$ TeV) \Rightarrow relative unexplored energy scale between SPS and LHC experiments

At $\sqrt{s_{NN}} = 110$ GeV, c.m. rapidity is $-2.8 < y^* < 0.2$ \Rightarrow backward detector with access to large x value in target nucleon, sensitive to antishadowing/EMC region and intrinsic heavy quark content in nucleons

Samples acquired during Run 2, up to $\int \mathcal{L} dt \sim 100$ nb$^{-1}$ (pNe) and ~ 100 µb$^{-1}$ (PbNe)
Heavy ion (and fixed target) submitted papers since last La Thuile conference:

- **ATLAS** 13 (+ 3 prelim.)
- **CMS** 16 (+ 1 prelim.)
- **LHCb** 5 (+ 1 prelim.)

A wide range of observables, with the main goals of:

- characterising the properties of quark gluon plasma (QGP)
- understand collectivity in particle production across system size from **pp** to **PbPb**

A biased selection in this talk, focused on:

- **Heavy flavours**
 - Sequential quarkonia suppression in PbPb and pPb
 - Open heavy flavours in PbPb and pPb
 - Flow of quarkonia in PbPb and pPb

- **Electroweak probes**
 - W/Z boson production in PbPb and pPb
 - γ-tagged jets
 - Ultra-peripheral collisions (UPC)

- **Fixed target results**
 - Charm production at large Bjorken-\(x\)
 - “cosmic” collisions pHe → antiprotons
Reconstruction of Heavy Flavours

Rich heavy flavour samples collected by the three experiments, thanks to the large integrated luminosities and the excellent vertexing and particle id performance. Prompt charm and charm-from-\(b\) components can be disentangled \(\psi(')\) in PbPb

First exclusive open-\(b\) decay signals in heavy ions

\(B^0_s \rightarrow J/\psi \phi\) in PbPb \text{arXiv:1810.03022}

\(B^+ \rightarrow D^0\pi^+\) in pPb \text{arXiv:1902.05599}
Sequential quarkonia suppression in PbPb/pPb

- Suppression of quarkonia states from colour screening is the classical (predicted 1986) signature for QGP formation;
- Important to distinguish prompt and non-prompt charmonia, as the latter are expected to be formed outside the QGP;
- Charmonia regeneration is also expected to be important at LHC energies (not for bottomonia);
- Parton energy loss in the medium can also affect the suppression pattern.

Observable is the nuclear modification factor

\[R_{AA} = \frac{\text{Yield}_{AA}}{\langle N_{\text{coll}} \rangle} \frac{\text{Yield}_{pp}}{\text{Yield}_{pp}} \]

- Cold nuclear matter (CNM) effects need to be also taken into account: initial state effects (nPDF), coherent parton energy loss, interaction with comovers, \(p_T \) broadening...
- Measurement in pPb as a reference for CNM effects
Charmonia suppression in PbPb

Measurement of R_{AA} for prompt and non-prompt J/ψ and $\psi(2S)$

- Strong J/ψ suppression, decreasing at large p_T in similar way for prompt, non-prompt J/ψ and light charged particles. Hint for common parton energy loss mechanism?
- Double ratio $R_{AA}(\psi(2S))/R_{AA}(J/\psi)$ consistent with sequential suppression for prompt particles.
- Increase of double ratio at large multiplicity could be due to relatively larger regeneration of $\psi(2S)$.
- Some tension with the earlier CMS result. 2018 data should clarify the situation.
Spectacular bottomonium sequential suppression observed by CMS

Hydro model [Kroupa Strickland, Universe 2 (2016) 16], implementing color screening and tuned on charged-hadron measured spectra and flow, was able to predict data, but sizeable CNM effects are not excluded in other models
Excited quarkonia states more suppressed also in pPb! Smoking gun for final state effects in CNM!

ϒ results nicely agree with predictions from “comovers” model,

Ferreiro, PLB 749 (2015) 98
Clean signals in four exclusive B decay modes:

<table>
<thead>
<tr>
<th>Decay</th>
<th>pPb</th>
<th>Pb\bar{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+ \rightarrow \bar{D}^0 \pi^+$</td>
<td>1958 ± 54</td>
<td>1806 ± 55</td>
</tr>
<tr>
<td>$B^+ \rightarrow J/\psi K^+$</td>
<td>883 ± 32</td>
<td>907 ± 33</td>
</tr>
<tr>
<td>$B^0 \rightarrow D^- \pi^+$</td>
<td>1151 ± 38</td>
<td>889 ± 34</td>
</tr>
<tr>
<td>$\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$</td>
<td>484 ± 24</td>
<td>399 ± 23</td>
</tr>
</tbody>
</table>

- Suppression observed at forward rapidity and low p_T, compatible with results from non-prompt J/ψ
 - consistent with nPDF (shadowing)
- Similar pattern observed for hidden and open charm
- Rapidity dependence can also be explained by coherent parton energy loss

Arleo and Peigné, JHEP 03 (2013) 122

G. Graziani slide 12
Azimuthal anisotropies are key observables to investigate interaction of the heavy flavour probes with the hot medium

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \psi_n)]
\]

Elliptic flow v_2 measured separately for prompt and non-prompt J/ψ

Higher flow at low p_T for prompt J/ψ, compatible with regeneration

Hint for universal behaviour at high p_T, like for R_{AA}

Similar measurements from ALICE and CMS, though at different energy and rapidity coverage, give consistent picture, suggesting sizeable collective behaviour of charm quarks in the QGP
More surprising is the observation of such collective behaviour of heavy flavours in smaller collision systems:

- Sizeable v_2 for prompt J/ψ and D^0 in pPb measured by CMS in high-multiplicity events
- QGP in small systems? Strong initial state momentum correlations?

CMS pPb 8.16TeV

- Prompt J/ψ:
 - $-2.86 < y_{cm} < -1.86$ or $0.94 < y_{cm} < 1.94$
- Prompt D^0 and strange:
 - $-1.46 < y_{cm} < 0.54$
Electroweak Probes: W/Z

- **W/Z boson** production provides information on the initial state, as decay products are not interacting strongly with the medium.

CMS-PAS-HIN-17-007

- **W production** in the 8.16 TeV pPb data, based on 180k $W \rightarrow \mu\nu$ candidates.
- Constraints on nPDF: good agreement with EPS09 and EPPS16, not compatible with DSSZ, nCTEQ15 and CT14 (nucleon).

- Precision **W and Z production** measurement in pp reference sample at 5.02 TeV.
- Will serve as reference for measurements in PbPb and pPb at same energy.
Photon-tagged jet energy loss

- High-p_T photons, unmodified by the medium, can be used to tag the initial p_T of a recoiling jet
- Measure gamma-jet p_T asymmetry $x_{J\gamma} \equiv p_T^{jet}/p_T^{\gamma}$ after unfolding detector effects
- Peripheral PbPb collisions similar to pp: peak for balanced events
- Strong modification in central collisions; double-peak structure indicating strong event-by-event fluctuations

![Graph showing photon energy loss with ATLAS data for different centrality classes](image)
Ultra-Peripheral Collisions

- UPC provide a flux of quasi-real photons probing the nuclear structure
- PbPb and pPb collisions exploit the large γ flux $\propto Z^2$
- For exclusive production of heavy flavour states, pQCD calculations are possible
- Sensitive to nPDF down to $x \sim 10^{-5}$ (for y up to 5)

CMS observed first Υ signal in pPb UPC

Sensitive to photon-proton energy $91 < W_{\gamma p} < 826$ GeV, filling the gap between HERA and LHCb (pp) measurements
LHCb observed a clean J/ψ signal (and hint for $\psi(2S)$) in PbPb

- Coherent and incoherent J/ψ photo-production can be distinguished from p_T shape
- Limited statistics, but precision of the measurement demonstrated
- Very good prospects with 2018 data

Result for coherent x-section, compared with phenomenological models
Dimuon photoproduction in non-UPC

Dimuons photoproduced on top of hadronic collisions, identified through the acoplanarity α and p_T asymmetry A

\[\alpha \equiv 1 - \frac{|\phi^+ - \phi^-|}{\pi} ; \quad A \equiv \frac{|p_T^+ - p_T^-|}{|p_T^+ + p_T^-|} \]

Significant broadening of the acoplanarity is observed in most central collisions

- a novel clean probe of the QGP medium!
14 events observed by CMS, with 11.1 ± 1.1 signal and 4.0 ± 1.2 background events expected; confirms ATLAS’s discovery

Result is used to set a limit on contribution from axion-like particle (ALP)
Charm production in Fixed targets

- First charm samples from pHe@69 GeV ($7.6 \pm 0.5 \text{ nb}^{-1}$) and pAr@110 GeV (few nb$^{-1}$)

- First determination of $c\bar{c}$ cross-section at this energy scale
- No evidence for sizeable intrinsic charm contribution
- More to come from larger samples on tape ($\sim 100 \text{ nb}^{-1}$ pNe and $\sim 100 \mu b^{-1}$ PbNe)
Cosmic Antiprotons

- Precision AMS-02 measurements of \bar{p}/p ratio in cosmic rays at high energies, indirect search for Dark Matter

- Prediction for \bar{p}/p ratio from spallation of primary cosmic rays on interstellar medium (H and He) is presently limited by uncertainties on \bar{p} production cross-sections

- First $\sigma(pHe \to \bar{p}X)$ measurement performed by LHCb with SMOG

- Accuracy below 10% in all kinematic bins, well below spread among models
LHCb approved an upgraded gas target (SMOG2), consisting in a storage cell located in the proximity of the interaction point, to be operational already in Run 3 (2021)

- allows larger gas density where needed ⇒ increase luminosity by up to 2 orders of magnitudes with same gas flow
- more gas species possible: hydrogen and deuterium, heavier gas (Kr, Xe)
- precise control of gas density

Physics prospects summarized in LHCb-PUB-2018-015

More proposals for the future (see *Physics Beyond Colliders* forum):
- polarized gas target
- solid target coupled with bent crystal, to study electric and magnetic moments of charmed baryons
- solid microstrip target
Heavy ions in future LHC Runs

<table>
<thead>
<tr>
<th>Year</th>
<th>Systems, $\sqrt{s_{NN}}$</th>
<th>Time</th>
<th>L_{int}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>Pb–Pb 5.5 TeV, pp 5.5 TeV</td>
<td>3 weeks</td>
<td>2.3 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week</td>
<td>3 pb$^{-1}$ (ALICE), 300 pb$^{-1}$ (ATLAS, CMS), 25 pb$^{-1}$ (LHCb)</td>
</tr>
<tr>
<td>2022</td>
<td>Pb–Pb 5.5 TeV, O–O, p–O</td>
<td>5 weeks</td>
<td>3.9 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week</td>
<td>500 μb$^{-1}$ and 200 μb$^{-1}$</td>
</tr>
<tr>
<td>2023</td>
<td>p–Pb 8.8 TeV, pp 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb$^{-1}$ (ATLAS, CMS), 0.3 pb$^{-1}$ (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>few days</td>
<td>1.5 pb$^{-1}$ (ALICE), 100 pb$^{-1}$ (ATLAS, CMS, LHCb)</td>
</tr>
<tr>
<td>2027</td>
<td>Pb–Pb 5.5 TeV, pp 5.5 TeV</td>
<td>5 weeks</td>
<td>3.8 nb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 week</td>
<td>3 pb$^{-1}$ (ALICE), 300 pb$^{-1}$ (ATLAS, CMS), 25 pb$^{-1}$ (LHCb)</td>
</tr>
<tr>
<td>2028</td>
<td>p–Pb 8.8 TeV, pp 8.8 TeV</td>
<td>3 weeks</td>
<td>0.6 pb$^{-1}$ (ATLAS, CMS), 0.3 pb$^{-1}$ (ALICE, LHCb)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>few days</td>
<td>1.5 pb$^{-1}$ (ALICE), 100 pb$^{-1}$ (ATLAS, CMS, LHCb)</td>
</tr>
<tr>
<td>2029</td>
<td>Pb–Pb 5.5 TeV</td>
<td>4 weeks</td>
<td>3 nb$^{-1}$</td>
</tr>
<tr>
<td>Run-5</td>
<td>Intermediate AA</td>
<td>11 weeks</td>
<td>e.g. Ar–Ar 3–9 pb$^{-1}$ (optimal species to be defined)</td>
</tr>
</tbody>
</table>

- Requirements and prospects for developing HI physics at the LHC have been summarised by the four LHC experiments within the HL-LHC workshop: report of WG5 in arXiv:1812.06772
- Proposed large increase in available luminosities, taking profit of upgrades of the experiments and of the HL-LHC
Conclusions

- ATLAS, CMS and LHCb are complementing ALICE in bringing breakthrough advances to the understanding of relativistic heavy ion collisions through a wealth of observables, exploiting the complementarity of the detectors.

- Much more results not covered here, notably on jet quenching and flow of light particles.

Summary of all HI results can be found at these web pages:

- **ATLAS**: twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults
- **LHCb**: lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/SummaryIFT.html