Wild Card ATLAS

Haichen Wang
University of California, Berkeley
Lawrence Berkeley National Laboratory

On behalf of the ATLAS Collaboration

54th Rencontres de Moriond
Electroweak Interactions and Unified Theories
17 March 2019
Measurement of ttH in Diphoton Final State using 139 fb$^{-1}$ data collected by the ATLAS experiment during the LHC Run-2

Haichen Wang
University of California, Berkeley
Lawrence Berkeley National Laboratory
On behalf of the ATLAS Collaboration

54th Rencontres de Moriond
Electroweak Interactions and Unified Theories
17 March 2019
Overview

- The associated production of the Higgs boson with top quarks provides a direct access to the top-Higgs coupling

- The diphoton channel is one of the leading channels in the $tt\bar{H}$ measurements
 - The diphoton resonant decay is an unambiguous signature for the Higgs boson
 - Robust background estimation from diphoton mass sidebands
Photon performance in ATLAS

- Photons are selected using a cut-based multivariate discriminant based on shower shape variables in the EM calorimeter.

- A “tight” identification, typically used in analysis, has an efficiency > 90% for high \(p_T \) photons, and a rejection at \(10^3 - 10^4 \).
B-tagging performance in ATLAS

- B-jets are tagged using a multivariate discriminant combining tracking, secondary vertex and decay chain information.

- The b-tagging is calibrated with a $\text{tt}\bar{\text{t}}$ control sample.

- In the ttH analysis, a b-tagger with a 77% efficiency is used, corresponding to a rejection of light jet at the level of a few hundreds.
The diphoton sample in ATLAS

Select two energetic and well isolated photons

\[P_{T1}/m_{\gamma\gamma} > 0.4, \quad P_{T2}/m_{\gamma\gamma} > 0.35 \]

\[|\eta| < 1.37 \text{ or } 1.52 < |\eta| < 2.37 \]

Quality requirement - Isolation and identification criteria

\[\sim 1.5 \text{ million events with } 105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV at } 139 \text{ fb}^{-1} \]

Assume the theoretical prediction, at **139 fb}^{-1}**, the LHC should have produced

- \(~ \sim 7,000,000\) Higgs bosons
- \(~ \sim 70,000\) via ttH production
- \(~ \sim 160\) in the ttH\(\gamma\gamma\) channel

for the ATLAS experiment
Strategy

Use photons to tag the Higgs Boson

Use jets (b-jets), leptons, and E_T^{miss} to capture the characteristics of top quarks

Directly use properties of the objects in the event to train a multivariate discriminant
Multivariate Training

Training variables

- 4-momenta of photons, jets, leptons
- Whether or not a jet is b-tagged
- Missing transverse energy and its ϕ direction

This discriminant is trained with

- **Signal - Powheg** Monte Carlo that models signal events
- **Background - data control sample** where the photon quality (isolation and/or identification) requirement is reversed
 - Mostly $\gamma\gamma +$ jets events, our main background before selection
 - See Jennet Dickinson’s talk for our understanding of the background composition
Training variables

Some example training variables

- **Photons**
- **Jets**
- **MET**
- **Leptons**

The training algorithm is a *Boosted Decision Tree (BDT)*
The BDT is trained for events with a lepton (leptonic) and events without a lepton (hadronic), separately.

Events with low BDT scores are removed.

The remaining events are classified into multiple categories with different signal-to-background-ratios (S/Bs) based on the BDT scores, to maximize the sensitivity.
Performance of Categorization

Event yields in a narrow mass window around 125 GeV

<table>
<thead>
<tr>
<th>Category</th>
<th>$t\bar{t}H$ Signal</th>
<th>non-$t\bar{t}H$ Higgs</th>
<th>Continuum Background</th>
<th>Total (Expected)</th>
<th>σ_{68} (GeV)</th>
<th>σ_{90} (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Lep' Category 1</td>
<td>7.9 ± 1.5</td>
<td>0.42 ± 0.12</td>
<td>4.6 ± 0.9</td>
<td>12.9 ± 1.8</td>
<td>1.56</td>
<td>2.80</td>
</tr>
<tr>
<td>'Lep' Category 2</td>
<td>3.9 ± 0.6</td>
<td>0.43 ± 0.15</td>
<td>7.5 ± 1.2</td>
<td>11.8 ± 1.3</td>
<td>1.75</td>
<td>3.13</td>
</tr>
<tr>
<td>'Lep' Category 3</td>
<td>1.45 ± 0.24</td>
<td>0.49 ± 0.19</td>
<td>7.5 ± 1.2</td>
<td>9.5 ± 1.2</td>
<td>1.85</td>
<td>3.30</td>
</tr>
<tr>
<td>'Had' Category 1</td>
<td>6.9 ± 1.6</td>
<td>0.8 ± 0.5</td>
<td>4.5 ± 0.9</td>
<td>12.2 ± 1.9</td>
<td>1.39</td>
<td>2.48</td>
</tr>
<tr>
<td>'Had' Category 2</td>
<td>5.6 ± 1.0</td>
<td>1.1 ± 0.8</td>
<td>16.5 ± 1.7</td>
<td>23.2 ± 2.3</td>
<td>1.58</td>
<td>2.84</td>
</tr>
<tr>
<td>'Had' Category 3</td>
<td>7.7 ± 1.3</td>
<td>3.1 ± 2.2</td>
<td>56.0 ± 3.0</td>
<td>67 ± 4</td>
<td>1.65</td>
<td>2.96</td>
</tr>
<tr>
<td>'Had' Category 4</td>
<td>4.9 ± 0.8</td>
<td>5 ± 4</td>
<td>101 ± 4</td>
<td>111 ± 6</td>
<td>1.67</td>
<td>3.00</td>
</tr>
</tbody>
</table>

- The S/B goes beyond 1 in the best “hadronic” and “leptonic” categories
- Contamination of non-$t\bar{t}H$ Higgs signals are strongly suppressed; $t\bar{t}H$ purity reaches 90% level in the best categories
- Best categories also correspond to categories with best diphoton resolutions
Diphoton mass distributions (hadronic)

ATLAS Preliminary
- $\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$m_{\gamma\gamma}$ distribution for different categories:

- **Had 1 category**
 - Data
 - Continuum Background
 - Total Background
 - Signal + Background

- **Had 2 category**
 - Data
 - Continuum Background
 - Total Background
 - Signal + Background

- **Had 3 category**
 - Data
 - Continuum Background
 - Total Background
 - Signal + Background

- **Had 4 category**
 - Data
 - Continuum Background
 - Total Background
 - Signal + Background
Diphoton mass distributions (hadronic)

ATLAS Preliminary
\sqrt{s} = 13 \text{ TeV, 139 fb}^{-1}

\begin{align*}
\text{Events / 1.375 GeV} &
\begin{array}{c}
\hline
\text{Data} \\
\text{Continuum Background} \\
\text{Total Background} \\
\text{Signal + Background} \\
\hline
\end{array}
\end{align*}

m_H = 125.09 \text{ GeV}

Had 1 category
Diphoton mass distributions (hadronic)
Diphoton mass distributions (leptonic)

\[m_{\gamma\gamma} \text{ [GeV]} \]

Events / 1.375 GeV

Data
Continuum Background
Total Background
Signal + Background

ATLAS Preliminary
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

Lep 1 category

Lep 2 category

Lep 3 category

\(m_h = 125.09 \text{ GeV} \)

Preliminary
ATLAS

= 13 \text{ TeV, 139 fb}^{-1}

= 125.09 \text{ GeV}

H_{Lep}

\(m_{\gamma\gamma} \text{ [GeV]} \)

\[m_{\gamma\gamma} \text{ [GeV]} \]

Events / 1.375 GeV

Data
Continuum Background
Total Background
Signal + Background

ATLAS Preliminary
\(\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \)

Lep 1 category

Lep 2 category

Lep 3 category

\(m_h = 125.09 \text{ GeV} \)

Preliminary
ATLAS

= 13 \text{ TeV, 139 fb}^{-1}

= 125.09 \text{ GeV}

H_{Lep}
A nice way to visualize the power of categorization is to draw the S/B weighted mass distribution.
Summary of expected and observed event yields

ATLAS Preliminary
\(\sqrt{s} = 13 \text{ TeV, 139 fb}^{-1} \)

<table>
<thead>
<tr>
<th>Events</th>
<th>Data - Bkg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Had 4</td>
<td>100</td>
</tr>
<tr>
<td>Had 3</td>
<td>70</td>
</tr>
<tr>
<td>Had 2</td>
<td>50</td>
</tr>
<tr>
<td>Had 1</td>
<td>30</td>
</tr>
<tr>
<td>Lep 3</td>
<td>20</td>
</tr>
<tr>
<td>Lep 2</td>
<td>10</td>
</tr>
<tr>
<td>Lep 1</td>
<td>5</td>
</tr>
</tbody>
</table>

Data
- \(\ttH (\mu=1.4) \)
- Non-\(\ttH \) Higgs
- Cont. Bkg.

Had categories
- 4 Had
- 3 Had
- 2 Had
- 1 Had

Lep categories
- 3 Lep
- 2 Lep
- 1 Lep

All numbers calculated in a mass window containing 90% of the \(\ttH \) signal events
The expected significance of the ttH process is $4.2 \, \sigma$, the observed is $4.9 \, \sigma$

The measured ttH cross section times $H \rightarrow \gamma\gamma$ branching ratio

\[
\sigma_{t\bar{t}H} \times B_{\gamma\gamma} = 1.59^{+0.43}_{-0.39} \text{ fb} = 1.59^{+0.38}_{-0.36} \text{ (stat.)} \, ^{+0.15}_{-0.12} \text{ (exp.)} \, ^{+0.15}_{-0.11} \text{ (theo.)} \text{ fb}
\]

while the SM expectation is

\[
\sigma_{t\bar{t}H} \times B_{\gamma\gamma} = 1.15^{+0.09}_{-0.12} \text{ fb}
\]
The expected significance of the \(ttH \) process is 4.2 \(\sigma \), the observed is 4.9 \(\sigma \).

The measured \(ttH \) cross section times \(H \right\right\gamma\gamma \) branching ratio is:

\[
\sigma_{ttH} \times B_{\gamma\gamma} = 1.59^{+0.43}_{-0.39} \text{ fb} = 1.59^{+0.38}_{-0.36} \text{ (stat.)} +0.15_{-0.12} \text{ (exp.)} +0.15_{-0.11} \text{ (theo.) fb}
\]

The signal strength (obs/SM) is measured to be:

\[
\mu_{ttH} = 1.38^{+0.41}_{-0.36} = 1.38^{+0.33}_{-0.31} \text{ (stat.)} +0.13_{-0.11} \text{ (exp.)} +0.22_{-0.14} \text{ (theo.)}
\]
Breakdown of systematic uncertainties

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>$\Delta\sigma_{\text{low}}/\sigma$ [%]</th>
<th>$\Delta\sigma_{\text{high}}/\sigma$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory uncertainties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underlying Event and Parton Shower (UEPS)</td>
<td>5.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Modeling of Heavy Flavor Jets in non-$t\bar{t}H$ Processes</td>
<td>4.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Higher-Order QCD Terms (QCD)</td>
<td>3.3</td>
<td>4.7</td>
</tr>
<tr>
<td>Parton Distribution Function and α_S Scale (PDF+α_S)</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Non-$t\bar{t}H$ Cross Section and Branching Ratio to $\gamma\gamma$ (BR)</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Experimental uncertainties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photon Energy Resolution (PER)</td>
<td>5.5</td>
<td>6.2</td>
</tr>
<tr>
<td>Photon Energy Scale (PES)</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>$\text{Jet}/E_T^{\text{miss}}$</td>
<td>2.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Photon Efficiency</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Background Modeling</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Flavor Tagging</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Leptons</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Pileup</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Luminosity and Trigger</td>
<td>1.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Higgs Boson Mass</td>
<td>1.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Summary

- ATLAS measurement of the $ttH \rightarrow \gamma\gamma$ process from the full LHC Run-2 data set was reported

- The ttH process is observed in the diphoton decay mode with a significance of 4.9 σ

- The ttH cross section times $H \rightarrow \gamma\gamma$ branching ratio is measured to be $1.59^{+0.43}_{-0.39}$ fb

- Details are available in ATLAS-CONF-2019-004
Back up
Unweighted diphoton mass distribution

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 139 fb$^{-1}$

$m_H = 125.09$ GeV

All categories
Weighted diphoton mass distribution

\[m_{\gamma\gamma} \text{ [GeV]} \]

\[\frac{\text{Sum of Weights}}{1.375 \text{ GeV}} \]

Data, Continuum Background, Total Background, Signal + Background

ATLAS Preliminary
\[\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \]
\[m_H = 125.09 \text{ GeV} \]

All categories
\[\ln(1+S/B) \text{ weighted sum} \]
Unweighted diphoton mass distribution

\[\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1} \]

- \(\tilde{t}\tilde{t}H (b\bar{b}) \):
 - Total: \(0.79 \pm 0.61 \)
 - Stat.: \(0.29 \pm 0.28 \)
 - Syst.: \(0.53 \pm 0.27 \)

- \(\tilde{t}\tilde{t}H (\text{multilepton}) \):
 - Total: \(1.56 \pm 0.42 \)
 - Stat.: \(0.30 \pm 0.29 \)
 - Syst.: \(0.30 \pm 0.27 \)

- \(\tilde{t}\tilde{t}H (\gamma\gamma) \):
 - Total: \(1.39 \pm 0.48 \)
 - Stat.: \(0.42 \pm 0.38 \)
 - Syst.: \(0.23 \pm 0.17 \)

- \(\tilde{t}\tilde{t}H (ZZ) \):
 - Total: \(< 1.77 \text{ at } 68\% \text{ CL} \)

- Combined:
 - Total: \(1.32 \pm 0.28 \)
 - Stat.: \(0.18 \pm 0.21 \)
 - Syst.: \(0.21 \pm 0.19 \)