Results on Proton-Irradiated 3D Pixel Sensors Interconnected to RD53A Readout ASIC

Duarte-Campderros, Jordi

et al

29 March 2019

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package 7: **Advanced hybrid pixel detectors**.

Copyright © CERN for the benefit of the AIDA-2020 Consortium
Results on Proton-Irradiated 3D Pixel Sensors Interconnected to RD53A Readout ASIC

a Instituto de Física de Cantabria (Universidad de Cantabria/CSIC), Av de los Castros s/n 39005 Santander, Spain
b European Organization for Nuclear Research (CERN), 1211 Geneva 23, Switzerland
c INFN Sezione de Firenze, Via Giovanni Sansone, 1, 50019 Sesto Fiorentino FI, Italy
d INFN Sezione di Milano, Milano, Italy
e University of Milano Bicocca, Milano, Italy
f INFN Sezione di Torino, Via Pietro Giuria, 1, 10125 Torino, Italy
g INFN Sezione di Pavia, Via Agostino Bassi, 6, 27100 Pavia, Italy
h Università degli studi di Bergamo, Bergamo, Italy
i INFN Sezione di Pisa and Università di Pisa, Largo Bruno Fibonacci, 2, 56127, Pisa, Italy
j Università degli Studi di Trento, Via Calepina, 14, 38122 Trento, Italy
k INFN Sezione di Padova, Gruppo Collegato di Trento, Trento, Italy
l FBK-Fondazione Bruno Kessler, Via Sommarive, 18 - Porto 38123 Trento, Italy
m Centro Nacional de Microelectrónica, IMB-CNM (CSIC), 08193 Barcelona, Spain

Abstract

Test beam results obtained with 3D pixel sensors bump-bonded to the RD53A prototype readout ASIC are reported. Sensors from FBK (Italy) and IMB-CNM (Spain) have been tested before and after proton-irradiation to an equivalent fluence of about $1 \times 10^{16} \text{n}_{eq} \text{cm}^{-2}$ (1 MeV equivalent neutrons). This is the first time that one single collecting electrode fine pitch 3D sensors are irradiated up to such fluence bump-bonded to a fine pitch ASIC. The preliminary analysis of the collected data shows no degradation on the hit detection efficiencies of the tested sensors after high energy proton irradiation, demonstrating the excellent radiation tolerance of the 3D pixel sensors. Thus, they will be excellent candidates for the extreme radiation environment at the innermost layers of the HL-LHC experiments.

Keywords: Performance of High Energy Physics Detectors, Pixelated detectors and associated VLSI electronics, Radiation-hard electronics, Radiation damage to detector materials (solid state), Radiation-hard detectors

1. Radiation Hardness and 3D Columnar Pixel Sensors

Pixel detectors in the innermost layers of the High Luminosity Large Hadron Collider (HL-LHC) experiments will have to survive a fluence in excess of $1 \times 10^{16} \text{n}_{eq} \text{cm}^{-2}$ (1 MeV equivalent neutrons), while preserving high tracking efficiency [1]. It has already been demonstrated [2] that 3D pixel sensors are sufficiently radiation tolerant to resist the expected fluence on the innermost layers of the tracking systems of HL-LHC experiments, although it was done by using a coarse pitch readout chip. This work, complementing ref. [3], uses for the first time 3D sensors bump-bonded to a fine pitch readout ASIC (RD53A). In addition, the study presents characterization results of 3D pixel sensors of 25µm x 100µm pitch with one single collecting electrode per cell, irradiated up to $1 \times 10^{16} \text{n}_{eq} \text{cm}^{-2}$.

Columnar 3D pixel sensors [4, 5] possess several intrinsic properties making them good candidates to a create the lay-

Figure 1: Schematic diagram of a planar (left) and a 3D (right) sensor, showing the charge carrier creation when a particle passes through, and the carriers movement before being collected on the electrodes.

ers of a tracking system exposed to an extreme radiation environment. For example, the voltage needed to fully deplete the sensor is much lower than in an equivalent planar sensor, particularly after irradiation, due to small distance between junction and ohmic contacts. For the same reason, charge carriers travel less distance than in an equivalent planar detector, therefore they are less impacted by trapping. Charge carriers in the 3D pixel sensors travel only 35µm for a 50µm x 50µm pixel pitch independently of the sensor thickness, which is the driving
parameter for planar pixels. The 3D pixels have also a very fast response time. Figure 1 compares both planar and 3D designs.

The 3D sensors used in this work were fabricated at the FBK in Trento (Italy), and in the IMB-CNM in Barcelona (Spain). Sensors from FBK were bump-bonded to the RD53A readout-chip, while sensors from IMB-CNM were bump-bonded to the ROC4SENS chip. The substrates were p-type Si-Si high-resistivity wafers with 130 µm thickness in the case of the FBK sensors, and conventional p-type high-resistivity FZ wafers of 230 µm thickness, for the IMB-CNM sensors. Detector and fabrication description can be found on ref. [4, 5]. Figure 2 shows both single-sided FBK and double-sided IMB-CNM pixel layout sensors.

![Figure 2: Cross-section of the 3D pixel sensor layouts](image)

The sensors were created with two different pixel cells: 50 µm \(\times \) 50 µm and 25 µm \(\times \) 100 µm, the latter having one (1E) or two (2E) collecting electrodes per cell. The 1E case is particularly interesting given the large yield when producing them. Two examples of pixel cells are shown in figure 3. Both cell sizes are presently under evaluation in the Compact Muon Solenoid (CMS) collaboration for the inner layers of the pixel detectors for HL-LHC.

After fabrication, the FBK pixel sensor wafers were processed for UBM (Under Bump Metallization), thinned down to 200 µm total thickness, diced and bump-bonded to RD53A prototype chips at IZM (Berlin, Germany). The RD53A chip has 76800 readout channels (400 rows and 192 columns with a bump pad pitch of 50 µm \(\times \) 50 µm) and measures 20.0 mm \(\times \) 11.8 mm. The pixel sensor bonded to the readout chip needs to be glued and wire-bonded onto an adapter card in order to be tested; these units will be referred to as modules in the following text. All results referring to the FBK prototype chips at IZM (Berlin, Germany).

IMB-CNM sensors were also processed for UBM and then bump-bonded to ROC4SENS readout chips. The ROC4SENS is a generic chip able to readout without zero suppression, and therefore specially well suited for sensor studies. The chip has a bump pad pitch of 50 µm \(\times \) 50 µm with 160 rows and 155 columns providing 24800 pixels in a 9.8 mm \(\times \) 7.8 mm surface.

2. Irradiation and Test Beam setup

Irradiations were performed during 2017 for the IMB-CNM sensors, and in 2018 for the FBK sensors; both at the CERN IR-RAD facility, a high intensity 24 GeV/c proton beam which has a FWHM of 12 mm in x and y directions. The target fluence for the IMB-CNM sensors was \(3 \times 10^{15} \, \text{n}_{eq} \, \text{cm}^{-2} \), while for the FBK ones, \(1 \times 10^{15} \, \text{n}_{eq} \, \text{cm}^{-2} \). The latter modules were tilted on the IRRAD beam at an angle of 55° in order to homogeneously irradiate the 20 mm \(\times \) 12 mm sensors and readout chip areas. The corresponding total ionizing dose was 6 MGy for 1.65 \(\times 10^{16} \) protons cm\(^{-2} \).

Visual inspections after irradiation and data analysis are showing that the FBK modules were displaced with respect to the irradiation beam axis by a few millimeters and therefore the nominal fluence was reached only in a part of the modules, in particular in about half of the linear FE. Several measurements and cross-checks are being performed in order to establish the effective fluence integrated on the modules. All results shown here are based on the nominal requested equivalent fluence.

Figure 4 shows several modules mounted on the supports ready to be irradiated and one of the modules characterized in this work.

![Figure 4: Tilted modules mounted on the tilted supports](image)

(a) Modules mounted on the tilted supports
(b) A module after irradiation
RD53A modules were tested in two test beam experiments at the CERN North Area H6B before and after irradiation in July and October 2018 respectively. The test beam facility at CERN provided for this study 120 GeV/c hadrons, allowing to characterize the sensor response to minimum ionizing particles. Particle trajectory is measured by the high-spatial-resolution planes of an EUDET-type telescope [9] with less than 5 µm accuracy, and spatially correlated with the hits measured at our modules, i.e. Devices Under Test (DUT). An extra plane is placed between the telescope planes and is used to correlate in time the telescope with the DUT hits. The hit efficiency of a DUT is calculated from the available trajectories with a hit in the reference sensor, and looking for a hit in the DUT. More details on an equivalent test beam setup and data analysis can be found at ref. [10].

Irradiated modules were kept cold at temperatures between −20°C and −30°C using dry ice bricks. The temperature was monitored via PT1000 sensors located close to the backside of the module and via NTC resistors soldered on the adapter card. Both sensors gave consistent measurements.

The readout chip parameters were tuned in order to reach low thresholds and noise, having at most 1.5% masked pixels because of noisy channels. For the irradiated modules the average signal threshold was set to about 1400 electrons, with a noise value of 105 electrons for non-masked pixels, as shown in figure 5 for a 25 µm × 100 µm. Similar parameters were found for the 50 µm × 50 µm. The color scale for the threshold distribution represents the 4-bit DAC value used for the trimming of each individual pixel response.

3. Sensor response and Results

The 3D modules prior to irradiation reached hit detection efficiencies above 98.5% for perpendicular incident tracks, already at moderate bias (less than 15 V).

After irradiation, a bias voltage of at least 120 V was needed to reach similar efficiency. Figure 6 shows the comparison of hit efficiency before and after irradiation for 25 µm × 100 µm, and 50 µm × 50 µm, with the RD53A modules achieving around 98.6% hit detection efficiency before and after irradiation, at a bias of 150 V.

Table 1: Hit detection efficiency summary table for a fluence of 1 × 10^{16} n_{eq} cm^{-2} (errors are not quoted).

<table>
<thead>
<tr>
<th>3D Pixel-RD53A Linear FE</th>
<th>25 µm × 100 µm</th>
<th>50 µm × 50 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before irradiation</td>
<td>97.3%</td>
<td>98.6%</td>
</tr>
<tr>
<td>After irradiation</td>
<td>96.6%</td>
<td>97.5%</td>
</tr>
</tbody>
</table>

due to the columnar electrode diameter 5 µm was estimated to be around 1.5%. This effect can be greatly reduced by tilting the module on the beam. Hit efficiency higher than 99.3% was recovered when sensors are tilted with respect to the incident particles in order to maximize the charge sharing between pixels, as shown in figure 7 for 50 µm × 50 µm pixel size modules, and perpendicular incident tracks. In the efficiency plots the hits reconstructed over the whole module are projected on a 2 × 2 pixel cell window to put in evidence the sensor geometry and the possible effects of the columnar electrodes. The geometrical inefficiency

![Figure 5: Signal threshold (a) and noise (b) distributions for a 25 µm × 100 µm module after irradiation.](image)

![Figure 6: Hit detection efficiencies before (a) and after irradiation (b) for a 25 µm × 100 µm module.](image)

![Figure 7: Hit detection efficiencies before (a) and after irradiation (b) for a 50 µm × 50 µm module.](image)
was observed after irradiation and overall efficiency of 98% at normal incidence was reached.

The hit detection efficiencies as calculated in our data analysis for different runs are reported in Table 1.

The hit efficiency as a function of the applied bias voltage is reported in Figure 8, where it can be observed that starting from 120 V the sensors reach the full depletion regime.

Figure 8: Hit detection efficiencies when the sensor planes were tilted with respect to the incident particles by 12°. This figure corresponds to a 50 µm × 50 µm IMB-CNM sensor irradiated with a fluence of 3 × 10^{15} n_{eq} cm^{-2}, and bump-bonded to a ROC4SENS. The bias voltage was 150 V.

Figure 9: Hit detection efficiency as a function of the bias voltage for irradiated sensors up to a fluence of 1 × 10^{16} n_{eq} cm; for 50 µm × 50 µm (red triangles) and 25 µm × 100 µm (blue squares), with perpendicular incident particles.

4. Conclusions and Outlook

Initial test beam results obtained with 3D pixel sensors show no significant degradation after proton irradiation up to 1 × 10^{16} n_{eq} cm at bias voltages below 200 V, confirming 3D pixel sensors as a possible robust option for the inner layers of future tracking detectors. In particular, it is shown that a single collecting electrode per cell is enough to assure high efficiency. New data is currently being analyzed from the CERN 2018 test beam campaign as well as from Fermilab and DESY test beams, in order to confirm and extend this study. A new 3D sensor batch is in progress at FBK and a new batch with 25 µm × 100 µm and 50 µm × 50 µm pitch sensors just finished at IMB-CNM. These will be tested and characterized during this year.

Acknowledgments

I wish to thank Nuria Castello-Mor for providing me the elegant template I used for the poster. We thank the RD53 Collaboration for the RD53A chip; we remind our results are not on chip performance but on sensor performance. RD50 Collaboration for its support. Bonn ATLAS group for SCC cards and support for flip-chipping. Some of the measurements leading to these results have been performed at the CERN North Area Test Beam Facility at Prévessin (France). Some of the measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF). This project has been partially supported by the Spanish Ministry of Science under grants FPA2015-71292-C2-2-P, FPA2017-85155-C4-1-R and FPA2017-85155-C4-2-R; and the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168 (AIDA-2020).

References

