Rare, radiative and electroweak penguin decays of heavy flavour hadrons at LHCb

Clara Remón Alepuz, on behalf of the LHCb collaboration

Rencontres Moriond QCD

La Thuile, March 2019
Outline

- Introduction: New physic searches in rare-b decays
- Experimental status (excluding LFUV*)
- $b \rightarrow s\gamma$ transitions:
 - **NEW!!** First observation of the rare radiative $\Lambda_b \rightarrow \Lambda\gamma$ decay
 LHCb-PAPER-2019-010
 - **NEW!!** Measurement of mixing-induced CP-violating observables in $B_s^0 \rightarrow \phi\gamma$

* LFUV related talks will be presented this afternoon, see talk by Rolf Oldeman with new results!
Rare-b decays

Flavour Changing Neutral Currents (FCNC) only occur via loop diagrams in the SM. **New heavy particles** can enter the loop inducing quantum effects

\[b \to s\gamma \]

\[b \to \ell^+\ell^- \]

\[b \to s\ell^+\ell^- \]

Indirect searches can probe New Physics much larger scales
Rare-\(b\) decays

Model-independent description: \(\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \sum_i \{C_i O_i + C_i' O_i'\} \)

\[b \to s\gamma \left(C_7^{(\prime)} \right) \]

\[b \to \ell^+\ell^- \left(C_{10, S, P}^{(\prime)} \right) \]

\[b \to s\ell^+\ell^- \left(C_{7, 9, 10}^{(\prime)} \right) \]

NEW!!

\(B_s^0 \to \phi\gamma \)
\(\Lambda_b \to \Lambda\gamma \)

In agreement with SM

\[B_{(s)} \to \mu^+\mu^- \]
\[B_{(s)} \to \tau^+\tau^- \]

Several deviations

\[B \to K^*\mu\mu \left(P_5^i \right), \ldots \]
\[\Lambda_b \to \Lambda\mu\mu \text{ (BR, angular)} \]

PRL. 118, 191801 (2017)
PRL. 118, 251802 (2017)
Experimental status

Several deviations observed in $b \rightarrow s \ell \ell$ measurements (BR’s and angular analysis)

Global fit

- Global fits show that anomalies in $b \rightarrow s \ell \ell$ can be explained by NP contributions in C_9 or both C_9 and C_{10}

- LFUV results point in the same (up to 5σ) see talk by Rolf Oldeman with new results!

- Possible interpretations:
 Underestimated hadronic uncertainties (while do not explain LFUV)
 NP contributions coming from Z', lepto-quarks ...
Radiative decays

$b \rightarrow s\gamma$

► **NEW!!** First observation of the rare radiative $\Lambda_b \rightarrow \Lambda\gamma$ decay

► **NEW!!** Measurement of mixing-induced CP-violating observables in $B_s^0 \rightarrow \phi\gamma$
Radiative $b \rightarrow s\gamma$ decays

- Due to the chiral structure of W bosons, in the SM the photon polarization is predominantly left-handed, with a small right-handed component:

$$\frac{C'_7}{C_7} \sim O\left(\frac{m_s}{m_b}\right)$$

- In some models (like LRSM), $|A_R/A_L|$ up to 1/2 Fu-Sheng Yu et al., JHEP12(2013)102
First observation of the rare radiative $\Lambda_b \to \Lambda\gamma$ decay

NEW!!*

* Presented last week in Moriond EW
Search for $\Lambda_b \rightarrow \Lambda \gamma$

Large room for improvement in $\mathcal{B}(\Lambda_b \rightarrow \Lambda \gamma)$:

- **SM prediction:** $10^{-7} - 10^{-5}$
- **Best limit from CDF:** $< 1.9 \times 10^{-3}$ (95% CL)

- If observed, it will open the possibility for **photon polarization** measurement in b-baryon decays through angular analysis

- Reconstruction very challenging:
 - No Λ_b^0 decay vertex
 - Crucial signal/background separation
 - High performance BDT (XGBoost)
 - $B^0 \rightarrow K^{*0} \gamma$ used as normalization channel
Search for $\Lambda_b \rightarrow \Lambda \gamma$

- Using 2016 data (1.7 fb^{-1})
- **First observation** of $\Lambda_b \rightarrow \Lambda \gamma$ (5.6 significance)

\[
\mathcal{B}(\Lambda_b \rightarrow \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.7 \pm 0.6) \times 10^{-6}
\]

- Branching fraction measurement within range of SM predictions
- Main systematic comes from the limited knowledge of the ratio of hadronization fractions $f_{\Lambda_b^0}/f_{B^0}$
Photon polarization in $B_s^0 \rightarrow \phi\gamma$

- Mixing induced interference gives access to the photon polarization through the time evolution of $B_s^0 \rightarrow \phi\gamma$

$$\Gamma(t) \propto e^{-\Gamma_s t} \left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) - A_{\phi\gamma}^\Delta \sinh \left(\frac{\Delta \Gamma_s t}{2} \right) \pm C_{\phi\gamma} \cos (\Delta m_s t) \right]$$

- $A_{\phi\gamma}^\Delta$ and $S_{\phi\gamma}$ are sensitive to photon polarization (and weak phases), while $C_{\phi\gamma}$ is related to direct CP violation
- SM predictions close to zero
- $A_{\phi\gamma}^\Delta$ measured at LHCb with Run I data

$$A_{\phi\gamma}^\Delta = -0.98^{+0.46}_{-0.52} +0.23_{-0.20}$$

[PRL 118(2017)2,021801]
Photon polarization in \(B_s^0 \rightarrow \phi \gamma \)

- Mixing induced interference gives access to the photon polarization through the time evolution of \(B_s^0 \rightarrow \phi \gamma \)

\[
\Gamma(t) \propto e^{-\Gamma_s t} \left[\cosh \left(\frac{\Delta \Gamma_s t}{2} \right) - A_{\phi \gamma}^\Delta \sinh \left(\frac{\Delta \Gamma_s t}{2} \right) \pm C_{\phi \gamma} \cos (\Delta m_s t) \right] \\
\pm S_{\phi \gamma} \sin (\Delta m_s t)
\]

- \(A_{\phi \gamma}^\Delta \) and \(S_{\phi \gamma} \) are sensitive to photon polarization (and weak phases), while \(C_{\phi \gamma} \) is related to direct CP violation

- SM predictions close to zero \([\text{PLB 664(2008)174-179}]\)

- NEW!! Using the flavour information of the initial \(B_s \) meson we can also measure \(C_{\phi \gamma} \) and \(S_{\phi \gamma} \) \([\text{LHCb-PAPER-2019-015}]\) (in preparation)

First measurement of \(C_{\phi \gamma} \) and \(S_{\phi \gamma} \) in \(B_s \) decays
Measurement of mixing-induced CP-violating observables in $B_s^0 \rightarrow \phi\gamma$

NEW!!
Mass fit

- $B^0_s \rightarrow \phi \gamma$ (signal) and $B^0 \rightarrow K^{*0} \gamma$ (control) decays are reconstructed, with two opposite sign hadrons ($\phi \rightarrow K^+ K^-$ and $K^{*0} \rightarrow K^\pm \pi^\pm$) and a high-$E_T$ photon in the final state.

- Background subtracted with sPlot, fitting the reconstructed B mass:
 - **Signal**: double-sided Crystal Ball
 - **Combinatorial**: First-order polynomial
 - **Partially reconstructed**: ARGUS convolved with a Gaussian

- 5300 signal yield (Run I)
- 32 000 signal yield (Run I)

![Graphs showing mass fit](image_url)
Proper-time fit

- Simultaneous unbinned ML fit to $B^0_s \rightarrow \phi \gamma$ and $B^0 \rightarrow K^{*0} \gamma$ channels.

$$\Gamma_{B^0_s \rightarrow \phi \gamma}(t') = \Gamma(t', q|\omega) \otimes \{A(t_i)R(t, t' |\sigma_t)\}$$

Per-candidate σ_t and flavor-tagging information (q, ω) are used

B_s, \bar{B}_s and untagged

$$S_{\phi\gamma} = 0.43 \pm 0.30 \pm 0.11,$$

$$C_{\phi\gamma} = 0.11 \pm 0.29 \pm 0.11,$$

$$A_{\phi\gamma}^\Delta = -0.67^{+0.37}_{-0.41} \pm 0.17$$

Compatible with the SM at 1.3, 0.3 and 1.7 σ
S_{CP} and C_{CP} measurements in $b \rightarrow s\gamma$ transitions

- Measurement competitive with the previous measurements in B-factories.
- First measurement in B_s system
\(A_{\phi\gamma} \) and \(S_{\phi\gamma} \) give complementary constraints in the \(C'_7 \) complex plane.

\[
A_{\phi\gamma} \overset{\Delta}{\sim} \frac{\text{Re}(e^{-i\phi_s C_7 C'_7})}{|C_7|^2+|C'_7|^2}
\]

\[
S_{\phi\gamma} \overset{\Delta}{\sim} \frac{\text{Im}(e^{-i\phi_s C_7 C'_7})}{|C_7|^2+|C'_7|^2}
\]
Summary

Rare b-decays occur via FCNC allowing to probe large energy scales through indirect measurements

- Interesting pattern of deviations has emerged in $b \to s\ell\ell$. Consistent with the LFUV anomalies, both pointing in the same direction to NP

Latest results in LHCb (involving $b \to s\gamma$):

- First observation of the rare radiative $\Lambda_b \to \Lambda\gamma$, opening the possibility of photon polarization measurements in b-baryons
- Time-dependent analysis of $B_s^0 \to \phi\gamma$ gives constraints on $\text{Re}(C'_7)$ and $\text{Im}(C'_7)$. This is the first measurement of C_{CP} and S_{CP} in B_s^0 decays

Run 2 analysis ongoing stay tuned!