Tracking performance for long living particles at LHCb

Luis Miguel Garcia Martin Louis Henry Brij Kishor Jashal
Arantza Oyanguren Campos
on behalf of the LHCb collaboration

Instituto de Física Corpuscular (IFIC, UV-CSIC)

Connecting the dots and Workshop on Intelligent Trackers
2 - 5 April, 2019
Outline

1. Motivation
 - Physics case: Long living particles
 - LHCb detector

2. Tracking efficiency
 - MC methods
 - Importance of Data-driven methods

3. Method description
 - Proof of principle
 - Result with Real Data
 - Result with Simulation Run III

4. Conclusions
Physics Case

Long-lived particles (LLP) are important for many analyses:

- Λ frequently appear in b-baryon analyses
 - Heavy baryon are produce only at pp collision (LHC)
- K_s are common in b-meson decays
 - Essential to e.g. any isospin-ratio measurement
- Many BSM physics extensions imply the existence of LLPs
- Expand life time range for LLP searches, e.g. Dark Matter candidates
In the context of LHCb, long-lived (K_s, Λ):
\[\tau (= 10^{-11} - 10^{-10}) \times c \times \gamma \rightarrow \text{mean flight distance } 3\text{cm to } 3\text{m}. \]
In the context of LHCb, long-lived (K_s, Λ):

$$\tau(= 10^{-11} - 10^{-10}) \times c \times \gamma \rightarrow \text{mean flight distance 3cm to 3m.}$$
Physics Case and LHCb detector

In the context of LHCb, long-lived (K_s, Λ):

\[\tau(= 10^{-11} - 10^{-10}) \times c \times \gamma \rightarrow \text{mean flight distance 3cm to 3m}. \]
Track types

Long tracks
- Hits at least in VELO and T stations
- Used in majority of analyses

Downstream tracks
- Hits in TT and T stations (not in VELO)
- Decay products of long-lived particles

Proportion of each track type in the $\Lambda \to p\pi$ decay:

Large proportion of Downstream tracks ($\sim 1.5 \times$ Long tracks)
Track types

Long tracks
- Hits at least in VELO and T stations
- Used in majority of analyses

Downstream tracks
- Hits in TT and T stations (not in VELO)
- Decay products of long-lived particles

Proportion of Λ from Long and Downstream tracks in $\Lambda_b \to \Lambda \gamma$ decay:

- Analyses mainly uses Long and Downstream tracks
- Λ coming from b-baryons have higher momentum \Rightarrow higher proportion of downstream tracks
Tracking efficiency at LHCb

- **Why monitoring:** Need to check tracking performance, in particular the efficiency in order to optimize algorithms

- **How monitoring:** It is possible to extract tracking efficiency, ghost track rates using *simulated* decays

\[\epsilon = \frac{\# \text{Reconstructed tracks}_{L/D/T}}{\# \text{Reconstructible tracks}_{L/D/T}} \]
Why monitoring: Need to check tracking performance, in particular the efficiency in order to optimize algorithms

How monitoring: It is possible to extract tracking efficiency, ghost track rates using simulated decays

Importance of data-driven methods: Simulation can not reproduce perfectly Real Data. Data-driven methods allow us to detect and correct these differences
New method: The performance of downstream tracking algorithm is extracted from Real Data using $\Lambda \rightarrow p\pi$:

1. Run Tracking algorithms keeping these track types:
 - L Long tracks
 - D Dowstream tracks
 - FD False Dowstream tracks (Long tracks reconstructed as Dowstream)
2. Reconstruct prompt Λ from Long and False Dowstream tracks
3. Compute the efficiency using:

$$\epsilon = \frac{\# p^F_D(\text{hits}^{\text{VeLo}/\text{VP}}, \text{hits}^{\text{TT}/\text{UT}}, \text{hits}^{\text{Tstation}/\text{SciFi}})}{\# p^L(\text{hits}^{\text{VeLo}/\text{VP}}, \text{hits}^{\text{TT}/\text{UT}}, \text{hits}^{\text{Tstation}/\text{SciFi}})}$$
New method: The efficiency is computed as the number of downstream tracks reconstructed in a sample of Long tracks:
New method: The efficiency is computed as the number of downstream tracks reconstructed in a sample of Long tracks:
New method: The efficiency is computed as the number of downstream tracks reconstructed in a sample of Long tracks:
New method: The efficiency is computed as the number of downstream tracks reconstructed in a sample of Long tracks:
New method: The efficiency is computed as the number of downstream tracks reconstructed in a sample of Long tracks:
New method: The efficiency is computed as the number of downstream tracks reconstructed in a sample of Long tracks:
Proof of principle

This method works since the efficiency extracted:

- Does not depend on Z (track length)
- Coherent results outside the VELO detector
- Downstream algorithms should be able to reconstruct tracks from VELO region

Simulation Run II

Compatible results with [LHCb-PUB-2017-001]
Proof of principle

The independence with the z position can be checked in Real Data:

Real Data Run II

Av. Efficiency = 76.3 +/- 0.5 %

Real Data results compatible with MC Run II
To optimise the performance of the tracking algorithms, the efficiency can be expressed as function of other variables:

Real Data Run II

Large inefficiency for tracks with p_T lower than 0.5 GeV/c
The efficiency for the LHCb Upgrade detector with simulated data:

Simulation Upgrade (Run III)

Av. Efficiency = 89.4 +/- 0.2 %

New tracking detectors and algorithms provide an increase in the efficiency, even in the low p_T region
The efficiencies extracted using the method presented along with MC method are:

<table>
<thead>
<tr>
<th>Efficiency (%)</th>
<th>This method</th>
<th>MC Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Run II</td>
<td>77.4 ± 0.7</td>
<td>74.5 ± 0.3</td>
</tr>
<tr>
<td>Real Data Run II</td>
<td>76.3 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>Simulation Run III</td>
<td>89.4 ± 0.2</td>
<td>89.7 ± 0.1[1]</td>
</tr>
</tbody>
</table>

Conclusions

- A new method has been developed to check the performance of downstream tracking at LHCb.

 It allows to calibrate the algorithms with real data

- Results are compatible between simulation and real data

- Coherent with other monitoring methods

- Can be used in any other experiment with similar track type topology

- It will be used for monitoring algorithms with Run III Real Data

Stay Tuned for something awesome!
Thanks for your attention
Backup slides
Efficiency VS \(\Lambda \) End Vertex Z

Simulation Run II

Av. Efficiency = 77.4 +/- 0.7 %

LHCb simulation preliminary
Tracking sequence

Downstream and Long tracks are independents
It is possible to extract the track momentum resolution:

Simulation Run II

\[\sigma = (0.63 \pm 0.02) \% \]

Simulation Run III

\[\sigma = (0.46 \pm 0.02) \% \]

The new algorithms for the downstream tracking Run III has improved the momentum resolution [CERN-THESIS-2017-254]