Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Chilufya Mwewa
University of Cape Town

On behalf of the ATLAS Collaboration

XVII Workshop on Nuclear Physics, Havana
The ATLAS Experiment

- One of the Large Hadron Collider’s (LHC) general purpose detectors.

LHC Run II: 2015-2018

The total integrated luminosity recorded by ATLAS in 2015 and 2016 amounted to 36.1 fb⁻¹
Overview of SM measurements in ATLAS

\textbf{ATLAS Preliminary}

Run 1,2, \(\sqrt{s} = 5, 7, 8, 13 \) TeV

Standard Model Production Cross Section Measurements

\begin{itemize}
\item LHC pp, \(\sqrt{s} = 5 \) TeV
 \begin{itemize}
 \item Data \(0.025 \) fb\(^{-1}\)
\end{itemize}
\item LHC pp, \(\sqrt{s} = 7 \) TeV
 \begin{itemize}
 \item Data \(4.5 - 4.9 \) fb\(^{-1}\)
\end{itemize}
\item LHC pp, \(\sqrt{s} = 8 \) TeV
 \begin{itemize}
 \item Data \(20.2 - 20.3 \) fb\(^{-1}\)
\end{itemize}
\item LHC pp, \(\sqrt{s} = 13 \) TeV
 \begin{itemize}
 \item Data \(3.2 - 79.8 \) fb\(^{-1}\)
\end{itemize}
\end{itemize}
$W^{-}W^{+}jj$: Motivation

2. Vector Boson Scattering (VBS): $\sigma \propto s^2$ at high \sqrt{s} in the absence of the Higgs.
 - Unique test of the SM ElectroWeak (EW) sector and the Higgs mechanism.
 - Sensitive to triple, quartic and Higgs couplings
$W^\pm W^\pm jj$: Event selection

- Two isolated same-charge leptons with high transverse momentum (p_T).
- Large Missing Transverse Energy (E_T^{miss}).
- Two forward jets with large dijet invariant mass (M_{jj}) and a large rapidity separation (Δy_{jj}).
$W^\pm W^\pm jj$: Background estimation

Non-prompt
- $t\bar{t}$, $W+$jets, single top
- jet mis-reconstructed as lepton
- lepton from hadronic decays
- estimated from data

Prompt
- WZ, ZZ, VVV
- two same-charge leptons are picked up
- estimated from data and simulation

e/γ conversions
- $W^\pm W^{\mp}$, $V\gamma$
- lepton is assigned a wrong charge
- γ mis-reconstructed as e
- estimated from data and simulation

QCD $W^\pm W^\pm$
- estimated from simulation
Background due to γ conversions in $V\gamma$

We used a region dominated by $Z\gamma$ events with $Z \rightarrow \mu^+\mu^-$ and $\gamma \rightarrow e^-e^+$.

Event selection

- $\mu^+\mu^- + e^{\pm}$
- $E_T^{\text{miss}} < 30$ GeV
- $75 < M_{\mu\mu e} < 100$ GeV

Obtained a Scale Factor (SF) by comparing data to $Z\gamma$ events.

$$SF = \frac{\text{Data} - \text{OtherProcesses}}{Z\gamma}$$

$V\gamma$ events in the signal region were scaled by SF.

Uncertainty on SF was added as a systematic uncertainty.
$W^\pm W^\pm jj$: Observation

Significance extraction
- Maximum likelihood fit
- 4 bins of M_{jj}
- Fiducial region (fid): $M_{jj} > 500$ GeV

$W^\pm W^\pm$ signal: SHERPA

![Graph showing data distribution](image)

Observed significance: 6.9σ

Signal strength: $1.47 \pm 0.25\,(\text{stat}) \pm 0.12\,(\text{sys})$
W^±W^± jj: Cross section measurement

ATLAS Preliminary

\[\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} \]

Experimental uncertainties

Theoretical uncertainties

Interference with strong production and NLO EW

corrections are not included in theoretical predictions

\[
\sigma_{\text{fid}}^{\text{meas}} = 2.91^{+0.51}_{-0.47}\text{(stat)} \pm 0.23\text{(sys)} \text{ fb}
\]

Chilufya Mwewa (UCT-ATLAS)
Summary

- The VBS EW production of $W^\pm W^\pm$ has been observed by ATLAS at a significance of 6.9σ and a cross-section of 2.91 fb.
- Only 36.1 fb^{-1} has been utilized for this measurement.

![Graph showing ATLAS data accumulation]

- This analysis is being repeated on the full RunII data set.
- More statistics \Rightarrow higher precision!!
- More potential to probe new physics scenarios.

☆ Check this link for details on the results shown in this talk
Back up
Particle identification in ATLAS
Same sign WW EW VBS production

\[W^+ W^- jj \text{ at ATLAS} \]
Same sign WW EW non-VBS and QCD production

\[W^±W^±jj \text{ at ATLAS} \]
Same sign WW analysis selections

- **Event cleaning**
 - exactly two signal leptons with $p_T > 27$ GeV and the same electrical charge
 - with $|\eta| < 2.5$ for muons and
 - with $|\eta| < 2.47$ excluding $1.37 \leq |\eta| \leq 1.52$ for electrons
 - with $|\eta| < 1.37$ in the ee channel

- $m_{\ell\ell} \geq 20$ GeV
- remove events with three or more preselected leptons

- $|m_{ee} - m_Z| > 15$ GeV in the ee-channel
- $E_T^{\text{miss}} \geq 30$ GeV

- at least two jets
 - leading and subleading jets satisfying $p_T > 65$ GeV and $p_T > 35$ GeV, respectively

- $m_{jj} \geq 200$ GeV

- b-jet veto using the MV2c10 tagger with the 85% efficiency working point

- $|\Delta y_{jj}| > 2$
Pre-fit yields

<table>
<thead>
<tr>
<th></th>
<th>e^+e^+</th>
<th>e^-e^-</th>
<th>$e^+\mu^+$</th>
<th>$e^-\mu^-$</th>
<th>$\mu^+\mu^+$</th>
<th>$\mu^-\mu^-$</th>
<th>combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>WZ</td>
<td>1.7 ± 0.6</td>
<td>1.2 ± 0.4</td>
<td>13 ± 4</td>
<td>8.1 ± 2.5</td>
<td>5.0 ± 1.6</td>
<td>3.3 ± 1.1</td>
<td>32 ± 9</td>
</tr>
<tr>
<td>Non-prompt</td>
<td>4.1 ± 2.4</td>
<td>2.3 ± 1.8</td>
<td>9 ± 6</td>
<td>6 ± 4</td>
<td>0.57 ± 0.16</td>
<td>0.67 ± 0.26</td>
<td>23 ± 12</td>
</tr>
<tr>
<td>e/γ conversions</td>
<td>1.74 ± 0.31</td>
<td>1.8 ± 0.4</td>
<td>6.1 ± 2.4</td>
<td>3.7 ± 1.0</td>
<td>-</td>
<td>-</td>
<td>13.4 ± 3.5</td>
</tr>
<tr>
<td>Other prompt</td>
<td>0.17 ± 0.06</td>
<td>0.14 ± 0.05</td>
<td>0.90 ± 0.24</td>
<td>0.60 ± 0.25</td>
<td>0.36 ± 0.12</td>
<td>0.19 ± 0.07</td>
<td>2.4 ± 0.5</td>
</tr>
<tr>
<td>$W^\pm W^\pm jj$ strong</td>
<td>0.38 ± 0.13</td>
<td>0.16 ± 0.06</td>
<td>3.0 ± 1.0</td>
<td>1.2 ± 0.4</td>
<td>1.8 ± 0.6</td>
<td>0.76 ± 0.26</td>
<td>7.3 ± 2.5</td>
</tr>
<tr>
<td>Expected background</td>
<td>8.1 ± 2.4</td>
<td>5.6 ± 1.9</td>
<td>32 ± 7</td>
<td>20 ± 5</td>
<td>7.7 ± 1.7</td>
<td>4.9 ± 1.1</td>
<td>78 ± 15</td>
</tr>
<tr>
<td>$W^\pm W^\pm jj$ electroweak</td>
<td>3.80 ± 0.30</td>
<td>1.49 ± 0.13</td>
<td>16.5 ± 1.2</td>
<td>6.5 ± 0.5</td>
<td>9.1 ± 0.7</td>
<td>3.50 ± 0.29</td>
<td>40.9 ± 2.9</td>
</tr>
<tr>
<td>Data</td>
<td>10</td>
<td>4</td>
<td>44</td>
<td>28</td>
<td>25</td>
<td>11</td>
<td>122</td>
</tr>
</tbody>
</table>