Colors of QCD: Hadron spectroscopy and exotic states at LHCb

Mikhail Mikhasenko
on behalf of LHCb Collaboration

CERN, Switzerland

June 5th, 2019
Perspective of QCD – large white space with little colorful objects

Proton ~ 1 fm
Perspective of QCD – large white space with little colorful objects

\[\sim 1 \text{ fm} \]

proton
Perspective of QCD – large white space with little colorful objects

simple hadrons (baryons, mesons)

proton

neutron

hardonic molecules (atoms)

deuteron

.

.

.

.

.

.

.

.

.

.
Search for the new type of matter

How to search for color physics with colorless environment?

LHCb

Modification of a plot from [INT. J. MOD. PHYS. A 30, 1530022]
Several stories to tell
Run-II data, just-released results

1. Double heavy
2. Pentaquarks
3. Near-threshold $D\bar{D}$ spectroscopy
Excitation of the double-heavy double-flavor meson B_c
Double-flavor meson B_c and its excitations

B_c spectroscopy
- (CDF1998) first observation of B_c
- (ATLAS2014) first observation of excited $B_c(2S)$
- (CMS2019) resolving two radial-excited states, $(\uparrow\downarrow)^*$ and $(\uparrow\uparrow)^*$
- (LHCb2019) confirmation of two states

- Clean B_c sample, 3785 ± 73 ev.
- Large combinatorial background
Double-flavor meson B_c and its excitations

B_c spectroscopy
- (CDF1998) first observation of B_c
- (ATLAS2014) first observation of excited $B_c(2S)$
- (CMS2019) resolving two radial-excited states, $(\uparrow\downarrow)^*$ and $(\uparrow\uparrow)^*$
- (LHCb2019) confirmation of two states

Clean B_c sample, 3785 ± 73 ev.
Large combinatorial background

Mikhail Mikhasenko (CERN)
Hadrons at LHCb
June 5th, 2019
Double-flavor meson B_c and its excitations

B_c spectroscopy

- (CDF1998) first observation of B_c
- (ATLAS2014) first observation of excited $B_c(2S)$
- (CMS2019) resolving two radial-excited states, $(\uparrow\downarrow)^*$ and $(\uparrow\uparrow)^*$
- (LHCb2019) confirmation of two states

- Clean B_c sample, 3785 ± 73 ev.
- Large combinatorial background

Mikhail Mikhasenko (CERN)
Hadrons at LHCb
June 5th, 2019
5 / 13
Pentaquark states P_c

Hadronic molecules

\[
\bar{D}^0 \quad \leftrightarrow \quad \Sigma_c^+
\]
Almost-stable hadrons

Lifetime measurements of Λ_b^0 and B^0

- Identification of displaced vertex

$$\Lambda_b^0 \rightarrow pK^-\mu^+\mu^-$$

$$B^0 \rightarrow \pi K^-\mu^+\mu^-$$

- Similar decay chains

$$B^0 \rightarrow b\bar{u}W^+\bar{s}\bar{v}$$

$$\Lambda_b^0 \rightarrow u\bar{u}W^+\bar{s}\bar{v}$$

Yield / (0.3 ps)

$Y(t) \sim e^{-t/\tau}$

$\tau_{\Lambda_b^0}/\tau_B = 0.974 \pm 0.006 \pm 0.004$

$\tau_{\Lambda_b^0} = 1.479 \pm 0.009 \pm 0.010$ ps
Almost-stable hadrons

Lifetime measurements of Λ_b^0 and B^0

- identification of displaced vertex

$\Lambda_b^0 \rightarrow pK^-\mu^+$

- similar decay chains

$B^0 \rightarrow \pi K^-\mu^+$

$Y(t) \sim e^{-t/\tau}$

$\tau_{\Lambda_b^0}/\tau_{B^0} = 0.974 \pm 0.006 \pm 0.004,$

$\tau_{\Lambda_b^0} = 1.479 \pm 0.009 \pm 0.010$ ps,
Observation of $P_c(4450)$ and $P_c(4380)$,

\[P_c(4450) \sim P_c(4380) \]

Amplitude analysis of 2015

Helicity formalism, isobar model, 6-dim. analysis.

$A_{uu}^{\Lambda_b}$

$\Lambda_b, \Lambda \rightarrow J/\psi, \mu$

\Rightarrow first ever observation of 5-quark states $[uudc\bar{c}]$.
Adding more data with Run-II (2017,2018)

PRL 115, 072001 (2015)

LHCb data total fit background

P_c(4450) P_c(4380) P_c(1405) Λ(1520) Λ(1600) Λ’s

Gain in statistics × 9 = 246k events

Luminosity: 3 fb⁻¹ ⊕ 6 fb⁻¹,

Cross section × 2:
7 TeV → 13 TeV,

Selection efficiency × 2.

Amplitude Analysis

same AA gives consistent results, but unacceptable quality.

▶ Narrow peaks in J/ψ p

▶ Lineshape of Λ.

New features

Peak at 4.312 GeV becomes significant
Peak at 4.457 GeV got resolved in two!

Mikhail Mikhasenko (CERN)

Hadrons at LHCb

June 5th, 2019
Adding more data with Run-II (2017, 2018)

Gain in statistics \(\times 9 \)

- Luminosity: \(3 \text{ fb}^{-1} \oplus 6 \text{ fb}^{-1} \),
- Cross section \(\times 2 \):
 - 7 TeV \(\rightarrow \) 13 TeV,
- Selection efficiency \(\times 2 \).

Amplitude Analysis

- same AA gives consistent results,
- but unacceptable quality.
 - Narrow peaks in \(J/\psi p \)
 - Lineshape of \(\Lambda \).

\(\sqrt{s} > 2 \text{ GeV} \)
Adding more data with Run-II (2017, 2018)

Gain in statistics $\times 9$

- 26k events \Rightarrow 246k events
 - Luminosity: $3 \text{ fb}^{-1} \oplus 6 \text{ fb}^{-1}$,
 - Cross section $\times 2$:
 - 7 TeV \rightarrow 13 TeV,
 - Selection efficiency $\times 2$.

Amplitude Analysis

- same AA gives consistent results,
- but unacceptable quality.
 - Narrow peaks in $J/\psi p$
 - Lineshape of Λ.

New features

- Peak at 4.312 GeV becomes significant
- Peak at 4.457 GeV got resolved in two!
Extracting resonance properties

[arXiv:1904.03947]

1-dim. fit and extensive systematic studies:

- Three different projection methods
- Several background parametrization
- Interference effects
- Procedure is validated using 6-dim. MC

Mass and width of the peaks

<table>
<thead>
<tr>
<th>State</th>
<th>M [MeV]</th>
<th>Γ [MeV]</th>
<th>(95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_c(4312)^+$</td>
<td>$4311.9 \pm 0.7^{+6.8}_{-0.6}$</td>
<td>$9.8 \pm 2.7^{+3.7}_{-4.5}$</td>
<td>< 27</td>
</tr>
<tr>
<td>$P_c(4440)^+$</td>
<td>$4440.3 \pm 1.3^{+4.1}_{-4.7}$</td>
<td>$20.6 \pm 4.9^{+8.7}_{-10.1}$</td>
<td>< 49</td>
</tr>
<tr>
<td>$P_c(4457)^+$</td>
<td>$4457.3 \pm 0.6^{+4.1}_{-1.7}$</td>
<td>$6.4 \pm 2.0^{+5.7}_{-1.9}$</td>
<td>< 20</td>
</tr>
<tr>
<td>$P_c(4380)^+$</td>
<td>inconclusive with 1-dim. analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mikhail Mikhasenko (CERN)

Hadrons at LHCb

June 5th, 2019
Plausible interpretation of P_c states

hadronic molecule

tightly-bound pentaquark

Many theoretical predictions of P_c binding published before 2015 (see backup).

Ampl.-Ana. is needed to check J^P.

Mikhail Mikhasenko (CERN)

Hadrons at LHCb

June 5th, 2019
Plausible interpretation of P_c states

$\Sigma_c \overline{D}$ hadronic molecules

- Narrow width
 - Problematic in tightly-bound picture
 - Problematic in the rescattering picture
- Number of states (HQSS):
 \[
 \begin{align*}
 \Sigma_c^+ \overline{D}^0 &\rightarrow 1/2^+ \otimes 0^- \quad S\text{-wave} \quad J^P : 1/2^- \\
 \Sigma_c^+ \overline{D}^{*0} &\rightarrow 1/2^+ \otimes 1^- \quad S\text{-wave} \quad J^P : 1/2^- \oplus 3/2^- \\
 \Sigma_c^{*+} \overline{D}^{*0} &\rightarrow 3/2^+ \otimes 1^- \quad S\text{-wave} \quad J^P : 1/2^- \oplus 3/2^- \oplus 5/2^-
 \end{align*}
\]

Many theoretical predictions of $\Sigma_c D$ binding published before 2015 (see backup).

Ampl.-Ana. is needed to check J^P.

Look forward for Run-III
New narrow charmonium state $X(3842)$
$D\bar{D}$ spectrum with 9 fb^{-1} (Run-I+Run-II)

[arXiv:1903.12240]

- displaced vertices
- $80 - 90\%$ purity
$D\bar{D}$ spectrum with 9 fb$^{-1}$ (Run-I+Run-II) [arXiv:1903.12240]

- displaced vertices
- 80 – 90 % purity

Candidates/(5 MeV /c2)2

\[m_{K^+\pi^-} \Rightarrow D^0 \bar{D}^0 \not\pi(\not\gamma) \]

$\chi_c(3872) \rightarrow D^0 \bar{D}^0 \not\pi(\not\gamma)$

$\psi(3770)$

$\psi(3842)$

$\chi_c(3930)$

$M_{\chi_c} \approx 3.879 \text{ GeV}$

$J^P = 3^-$

New state is consistent with D_3^3 (ψ_3), $J^P = 3^-$.
$D\bar{D}$ spectrum with 9 fb$^{-1}$ (Run-I+Run-II) [arXiv:1903.12240]

- displaced vertices
- 80 – 90% purity

New state is consistent with $1^3 D_3 (\psi_3(1D)), J^{PC} = 3^{--}.$
Conclusion

Exciting news on the color physics from LHCb:

- Confirmation of the $B_c(2S)$ and $B_c^*(2S)$ states,
- Groundbreaking update on pentaquarks,
- Amazing $D\bar{D}$ spectrum with new charmonium state, $\psi_3(3842)$.
Conclusion

Exciting news on the color physics from LHCb:

- Confirmation of the $B_c(2S)$ and $B_c^*(2S)$ states,
- Groundbreaking update on pentaquarks,
- Amazing $D\bar{D}$ spectrum with new charmonium state, $\psi_3(3842)$.

Not shown:

- new decay channel of Ξ_{cc}, $\Xi_{cc} \to \pi^+\Xi_c$
- first observation of the $\Lambda_b \to \Lambda\gamma$
- Observation of $B_{(s)}^0 \to J/\psi p\bar{p}$
- Observation of $\Xi_c \to \phi p$
- Many more, see complete list [here].
Thank you for the attention

backup slides follow...
Impact of new measurements on charmonium

Great interest in community

- $\psi_3(3842)$ is just seen on lattice, [arXiv:1905.03506v1]
B_c spectrum in relativistic quark model

[St. Godfrey PRD 70 054017 (2004)]
P_c interpretations

- $\Sigma_c D$ binding (published before 2015)
 - Z.-C. Yang et al., Chin. Phys. C36 (2012) 6

- Dynamically generated (see references in arXiv:1904.03947)

- Heavy-quark-spin-symmetry (HQSS) consequences
 - Ming-Zhu Liu et al., arXiv:1903.11560
 - C.W. Xiao et al., arXiv:1904.01296

- $P_c(4312)$ pole position and molecular binding,

- Tightly-bound pentaquark models (see references in arXiv:1904.03947)
Rescattering interpretation

Triangle singularity [see Appendix of arXiv:1904.03947]

- There are many thresholds around P_c peaks
 - $\Lambda_c \bar{D}^0$, $\Sigma_c \bar{D}^0$, $\chi_c N^*$ with different exchanges as suggested in [Guo et al.(PRD92 (2015) 071502), U.-G. Meißner et al. (PLB751 (2015) 59), X.-H. Liu et al. (PLB757 (2016) 231), MM (arXiv:1507.06552)]

- An appropriate Triangle Singularity can be found for all peaks

- BUT, as soon as width of exchange particle is taken into account

\Rightarrow no acceptable description in rescattering picture have been found
Investigation on molecular picture

Scattering-length approximation

$$T_{ij}^{-1} = m_{ij} - ik_i \delta_{ij},$$

$$k_i = \sqrt{s - s_i}$$

Two channels: $\Sigma_c^+ \bar{D}^0$ and $J/\psi p$.

Intensity

$$I(s) = \rho(s)(|T_{11}(s)p(s)|^2 + b(s)),$$

- $p(s)$ and $b(s)$ are the first order polynomials.
- $\rho(s)$ is a phase-space factor.

Consistent with the virtual state.