Energy and system size dependence of hadronic resonance production with ALICE at the LHC

Dukhishyam Mallick for the ALICE collaboration

School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni - 752050, Odisha, INDIA

Introduction

The study of the hadronic resonance production serves as a unique tool to understand the properties of matter created in heavy-ion collisions. Due to their short lifetime (∼ 10^{-23} sec), resonances are used as a sensitive probe to investigate the dynamical evolution of the hadronic medium produced in heavy-ion collisions. The resonances whose lifetime are comparable with the timespan of the hadronic phase (the time interval between chemical and kinetic freeze-out) are suited candidates for studying the regeneration and re-scattering processes. The resonance yields and particle ratios are expected to get modified due to the interaction of their decay daughters within the hadronic medium. Recent measurements in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV and in pp collisions at \(\sqrt{s} = 7, 13 \) TeV as a function of multiplicity have uncovered various bulk properties similar to those seen in heavy-ion collisions [1], [2].

Analysis details

The \(K^*(892)^0 \) and \(\phi(1020) \) vector mesons are reconstructed through invariant mass analysis using their hadronic decay channels. The signals of \(K^*(892)^0 \) and \(\phi(1020) \) in different \(p_T \) intervals are obtained by subtracting combinatorial background from “unlike-sign charged-particle invariant-mass distributions” for the various multiplicity classes. The combinatorial background is estimated by using mixed event technique. After combinatorial background subtraction a residual background remains which mainly arises from other sources of correlated pairs and misidentified particle decay products. The extracted \(K^*(892)^0 \) signal is fitted with a Breit-Wigner function and the \(\phi(1020) \) signal is fitted with a Voigtian function (which is a convolution of Breit-Wigner and Gaussian function) and a polynomial function describing the residual background. The raw yields are obtained from the area under the curve reproducing the signal invariant mass distribution in each of the \(p_T \) intervals for the various multiplicity classes. To measure the corrected transverse momentum \((p_T) \) spectra the raw yields are corrected for detector acceptance, reconstruction efficiency and decay branching ratio. The recent measurements of \(K^* \) and \(\phi \) mesons are performed in p-Pb, Pb-Pb and Xe-Xe collisions at \(\sqrt{s_{NN}} = 8.16, 5.02 \) and 5.44 TeV respectively.

Results and Discussion

The particle yield \((dN/dy) \) is obtained by integrating the \(p_T \) spectrum in the measured \(p_T \) region and estimating the yield in the unmeasured region using a Levy-Tsallis fit function. Figure 1 shows the \(dN/dy \) normalized...
FIG. 1: The scaled dN/dy of K^* as a function of $<dN_{ch}/dy>$ for $|y|<0.5$ in pp collisions at $\sqrt{s} = 7$, 13 TeV and in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$, 8.16 TeV respectively.

FIG. 2: Nuclear modification factor of K^* as a function of p_T in Xe-Xe collisions at $\sqrt{s_{NN}}$ 5.44 TeV and Pb-Pb collisions at $\sqrt{s_{NN}}$ 5.02 TeV for a similar charged particle multiplicity.

FIG. 3: The particle yield ratios ρ/π, K^*/K, $\Lambda(1520)/\Lambda$, Σ^*/Λ, Ξ^*/Ξ and ϕ/K as a function of $<dN_{ch}/dy>$ for pp, p-Pb and Pb-Pb collisions.

the LHC energies are also compared the EPOS model (with and without UrQMD) [3].

Acknowledgments

DM acknowledges financial support from DAE-DST projects.

References

