Spectroscopy and production of quarkonia and heavy flavour at ATLAS

Semen Turchikhin1

\textit{on behalf of ATLAS Collaboration}

1Joint Institute for Nuclear Research

\textit{22nd High-Energy Physics International Conference in Quantum Chromodynamics}

Montpellier, France

2–5 June 2019
ψ(2S) and X(3872) production at $\sqrt{s} = 8$ TeV – JHEP 1701 (2017) 117

ATLAS detector and trigger

ATLAS Detector

- **Muon chambers**
- **Tiled magnets**
- **LAr hadronic end-cap and forward calorimeters**
- **Pixel detector**
- **Transition radiation tracker**
- **Solenoid magnet**
- **Semiconductor tracker**

ATLAS Preliminary Data 2018

Data 2018

- **ISR = 13 TeV**
- **58.45 fb⁻¹**

Dimuon triggers:

- **ATLAS** Preliminary

Entries / 10 MeV

<table>
<thead>
<tr>
<th>$m_{\mu\mu}$ [GeV]</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10^4</td>
</tr>
<tr>
<td>4</td>
<td>10^5</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
</tr>
<tr>
<td>8</td>
<td>10^7</td>
</tr>
<tr>
<td>10</td>
<td>10^8</td>
</tr>
</tbody>
</table>

Entries / 50 MeV

<table>
<thead>
<tr>
<th>$m_{\mu\mu}$ [GeV]</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10^4</td>
</tr>
<tr>
<td>4</td>
<td>10^5</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
</tr>
<tr>
<td>8</td>
<td>10^7</td>
</tr>
<tr>
<td>10</td>
<td>10^8</td>
</tr>
</tbody>
</table>

Entries (low-m)

- **$\psi(2S)$**
- **$\psi(1S)$**
- **$\Upsilon(2S)$**
- **$\Upsilon(3S)$**

Triggering:

- **EF_2mu4_Dimu**
- **EF_2mu4_Jpsimumu**
- **EF_2mu4_Bmumu**
- **EF_2mu4_Upsimumu**
- **EF_mu4mu6_Jpsimumu**
- **EF_mu4mu6_Bmumu**
- **EF_mu4mu6_Upsimumu**
- **EF_mu20**
ψ(2S) and X(3872) production

JHEP 01 (2017) 117

- X(3872) was observed by Belle in 2003, later confirmed by others, $J^{PC} = 1^{++}$
- No clear theoretical picture yet
 - Loosely bound $D^0 \bar{D}^{*0}$ molecule
 - $\chi_{c1}(2P)$ state, or the mixture with $D^0 \bar{D}^{*0}$
 - Tetraquark (diquark + diquark)
- ATLAS measurement can help to answer some of the questions
 - Measure in $J/\psi \pi^+ \pi^-$ mode, together with well known $\psi(2S)$ state
 - helps to reduce systematics in ratios
 - Use 11.4 fb$^{-1}$ @ 8 TeV data
 - Limit to $|y| < 0.75$ for the best mass resolution
 - Measure differential cross-sections over 5 p_T bins
 - Use 4 bins of pseudo proper lifetime to extract prompt/non-prompt components
X(3872) lifetime hypotheses

- Measure the $X(3872)/\psi(2S)$ ratio
 \[R_B = \frac{B(B \to X(3872) + \text{any})B(X(3872) \to J/\psi \pi^+ \pi^-)}{B(B \to \psi(2S) + \text{any})B(\psi(2S) \to J/\psi \pi^+ \pi^-)} \]

- **Single lifetime hypothesis**
 - Assume non-prompt $\psi(2S)$ and $X(3872)$ produced from the same mix of parent b hadrons
 - same lifetime for $\psi(2S)$ and $X(3872)$ in each p_T bin
 - $R_B^{1L} = (3.95 \pm 0.32(\text{stat.}) \pm 0.08(\text{syst.})) \times 10^{-2}$
 - $X(3872)$ lifetime shorter in low-p_T bins
 - Possible B_c contribution?

- **Double lifetime hypothesis**: long-lived (LL) and short-lived (SL) components
 - τ_{LL} determined from $\psi(2S)$ fits, allowing for some SL contribution
 - τ_{SL} from simulation, varying B_c lifetime
 - Calculate $X(3872)$ fraction from B_c
 \[\frac{\sigma(pp \to B_c + \text{any})B(B_c \to X(3872) + \text{any})}{\sigma(pp \to \text{non-prompt } X(3872) + \text{any})} = (25 \pm 13(\text{stat.}) \pm 2(\text{syst.}) \pm 5(\text{spin}))\% \]
X(3872) production cross-section

- Prompt production described well by NRQCD
 - $X(3872)$ considered as a mixture of $\chi_c(2P)$ and $D^0\bar{D}^{*0}$ molecule
- Non-prompt compared to FONLL calculations
 - Predictions for $\psi(2S)$ recalculated using kinematic template of $X(3872)/\psi(2S)$
 - B_s estimated from CDF data
 - Factor 4–8 above the data, larger discrepancy at high p_T
- Non-prompt production fraction: no p_T dependence, agreement with CMS data
Prompt charmonium pair production

- Two principal possibilities to produce two objects in a \textit{pp} collision:
- Single Parton Scattering (\textit{SPS})
 - Dominated by gluon–gluon fusion
 - Theoretical description has a long history and still far from final
 - generally sensitive to higher-order QCD corrections
 - CS vs. CO models
 - needs to properly account for feed-downs from higher states
 - None of the models gives a perfect description of data
 - pair quarkonia production can help in understanding, interpretation of the measured cross-section can be simpler
- Double Parton Scattering (\textit{DPS})
 - effective cross-section σ_{eff} accounting for probability of the two processes to happen in a single \textit{pp} collision: $\sigma_{\text{DPS}} = \frac{1}{2} \frac{\sigma(J/\psi)^2}{\sigma_{\text{eff}}}$
 - σ_{eff} is assumed to be universal across processes and energy scales
 - 12–20 mb values obtained earlier; however, indication of lower values from pair charmonia/bottommonia production questions the universality of σ_{eff}
Measure production of prompt J/ψ pairs

- Use 11.4 fb$^{-1}$ at $\sqrt{s} = 8$ TeV
- Kinematic range: $p_T(J/\psi) > 8.5$ GeV, $|\eta(J/\psi)| < 2.1$

Per-event corrections
- Efficiency of trigger and reconstruction
- Muon acceptance

Backgrounds
- Non-J/ψ background separated by 2D mass fits
- Non-prompt J/ψ contribution separated by 2D L_{xy} fits
 - per-event weights as a function of L_{xy}
- (Small) pile-up background separated by 1D fit to d_z vertex distance

Due to different resolution, the measurement is done separately in central ($|y(J/\psi)| < 1.05$) and forward ($1.05 < |y(J/\psi)| < 2$) regions

DPS and SPS contributions are distinguished with a data-driven approach
Data-driven extraction of DPS contribution

- Templates for DPS and SPS contribution in
 \(\Delta \phi(J/\psi J/\psi) \times \Delta y(J/\psi J/\psi) \)
- DPS template – event mixing
 - combine \(J/\psi \)'s from random different events, assuming their independent kinematics
 - normalize to \(\Delta y > 1.8, \Delta \phi > \pi/2 \) region
- SPS contribution
 - obtained by subtracting the DPS from data
- Per-event weights \(w_{\text{DPS}}(\Delta \phi, \Delta y), w_{\text{SPS}}(\Delta \phi, \Delta y) \)
 assigned to study the DPS/SPS spectra
Results: cross-sections (1)

- **Fiducial cross-section in** $p_T(J/\psi) > 8.5$ GeV, $|y(J/\psi)| < 2.1$, $p_T(\mu) > 2.5$ GeV, $|\eta(\mu)| < 2.3$, $p_T(\mu) > 4$ GeV for two trigger muons

 15.6 ± 1.3 (stat) ± 1.2 (syst) ± 0.2 (BF) ± 0.3 (lumi) pb, for $|y| < 1.05$, 13.5 ± 1.3 (stat) ± 1.1 (syst) ± 0.2 (BF) ± 0.3 (lumi) pb, for $1.05 \leq |y| < 2.1$

- **Total cross-section in the J/ψ kinematic volume**

 82.2 ± 8.3 (stat) ± 6.3 (syst) ± 0.9 (BF) ± 1.6 (lumi) pb, for $|y| < 1.05$, 78.3 ± 9.2 (stat) ± 6.6 (syst) ± 0.9 (BF) ± 1.5 (lumi) pb, for $1.05 \leq |y| < 2.1$

 - assume unpolarized production
 - **Two peaks in** $p_T(J/\psi J/\psi)$
 - near zero – away topology, back-to-back
 - near higher p_T – towards topology
 - back-to-back to another gluon
 - NLO effect
Results: cross-sections (2)

- Differential SPS/DPS cross-sections measured in the muon fiducial volume
- DPS: scaled to measured f_{DPS} – only shape comparison
- SPS
 - Scaled by $\times 1.85$ to allow for feed-down
Results: cross-sections (2)

- Overall good agreement for DPS contribution
- Some discrepancies in total cross-section for away topology
- Significant fraction of events with towards topology \rightarrow LO predictions alone not enough to describe it
Results: DPS measurements

- σ_{eff} can be measured as
 $$\sigma_{\text{eff}} = \frac{1}{2} f_{\text{DPS}} \times \sigma(J/\psi J/\psi)$$
- $\sigma(J/\psi)$ from the ATLAS measurement Eur. Phys. J. C 76 (2016) 283
- $f_{\text{DPS}} = (9.2 \pm 2.1(\text{stat.}) \pm 0.5(\text{syst.}))\%$
- $\sigma_{\text{DPS}} = 14.8 \pm 3.5(\text{stat.}) \pm 1.5(\text{syst.}) \pm 0.2(\text{BF}) \pm 0.3(\text{lumi.}) \text{ pb}$
- $\sigma_{\text{eff}} = 6.3 \pm 1.6(\text{stat.}) \pm 1.0(\text{syst.}) \pm 0.1(\text{BF}) \pm 0.1(\text{lumi.}) \text{ mb}$
- LHC results with quarkonia are close to each other and to those of D0, but lower than measurements with other probes
 - Questions the assumption of σ_{eff} universality
 - $\text{di-J/}\psi, J/\psi-\Upsilon, 4$-jet processes are dominated by gg interactions → probe gluon distributions in proton

ATLAS

CMS ($\sqrt{s} = 8 \text{ TeV}, \ U(1S) + U(1S), 2016$)
LHCb ($\sqrt{s} = 13 \text{ TeV}, J/\psi + J/\psi, 2017$)
CMS + Lunsberg, Shao ($\sqrt{s} = 7 \text{ TeV}, J/\psi + J/\psi, 2014$)

CMS ($\sqrt{s} = 8 \text{ TeV}, \ U(1S) + U(1S), 2016$)
LHCb ($\sqrt{s} = 7 \text{ TeV}, J/\psi + J/\psi, 2017$)
CMS + Lunsberg, Shao ($\sqrt{s} = 7 \text{ TeV}, J/\psi + J/\psi, 2014$)

σ_{eff} [mb]

LHC results with quarkonia are close to each other and to those of D0, but lower than measurements with other probes

- Questions the assumption of σ_{eff} universality
- $\text{di-J/}\psi, J/\psi-\Upsilon, 4$-jet processes are dominated by gg interactions → probe gluon distributions in proton
Charmonia production in Pb + Pb, p + Pb

- Probe deconfined quark-gluon plasma in A + A collisions
 - Suppression (melting) could provide info about temperature of deconfinement
 - Enhancement could also appear; at low-p_T → new quarkonium formation mechanism (recombination of $c\bar{c}$ from the medium)
 - Non-prompt charmonia allows studying b quark propagation through the medium
 - Possibly different mechanism (collisions, radiation) from $c\bar{c}$ suppression (colour screening)
- ATLAS measurement for J/ψ and $\psi(2S)$ production in Pb + Pb with 0.42 nb$^{-1}$ @ $\sqrt{s_{NN}} = 5.02$ TeV: arXiv:1805.04077

Collisions of $p + A$ to disentangle cold nuclear matter effects (CNM)

- Suppression of charmonia production versus pp collisions, $R_{pPb} = \frac{1}{208} \frac{\sigma^{O(nS)}_{pPb}}{\sigma^{O(nS)}_{pp}}$
 - Seen in $p + Pb$ at low p_T (ALICE) and high y (LHCb), but not at ATLAS or CMS
- Suppression of relative production of the 1S and nS states in $p + Pb$ vs. pp,
 $\rho_{pPb}^{O(nS)/O(1S)} = \frac{R_{pPb}(O(nS))}{R_{pPb}(O(1S))}$
 - Seen at ALICE, PHOENIX for $\psi(2S)$ and J/ψ; at CMS for $\Upsilon(nS)$
 - Detector uncertainties mostly cancel
- ATLAS measurement for J/ψ, $\psi(2S)$, and $\Upsilon(nS)$ production in $p + Pb$ with 28 nb$^{-1}$ @ $\sqrt{s} = 5.02$ TeV: Eur. Phys. J. C 78 (2018) 171, see below
Charmonia in $p + p$ (reference): cross-sections

- Prompt J/ψ and $\psi(2S)$ production compatible with NRQCD;
- Non-prompt charmonia consistent with FONLL calculations;
- Υ production described well by NRQCD above $p_T > 15$ GeV;
- LDMEs extracted from fitting high-p_T data, not quite applicable to lower p_T.

![Graphs showing charm production cross-sections and comparisons with theory.](image-url)
Charmonia in $p + $ Pb: R factors

- R_{pPb} factors for prompt and non-prompt J/ψ consistent with unity
 - no p_T or y^* dependence
 - weak modification for J/ψ production due to CNM effects
- $R_{pPb} < 1$ for $\Upsilon(1S)$ below 15 GeV
 - stronger nPDF shadowing for small x?
Charmonia in Pb + Pb: R_{AA} factors

- J/ψ production strongly suppressed in central collisions
 - very similar for prompt and non-prompt
 - not quite expected, as the two cases have different origins
- R_{AA} increases at high $p_T > 12$ GeV for prompt J/ψ, flat for non-prompt
Charmonia in \(p + \text{Pb} \): \((nS)\) suppression

- Double ratios \(\rho_p^{O(nS)/O(1S)} \) in \(p + \text{Pb} \)
 - Relative \(\psi(2S) \) suppression increases with centre-of-mass rapidity, \(1\sigma \) significance trend
 - \(\Upsilon(nS) \) suppression by \(2\sigma \) in the full \(p_T < 40 \text{ GeV} \) and \(-2 < y^* < 1.5 \) region
 - Both more suppressed with more central collisions

![Diagrams showing double ratios for \(\psi(2S) \) and \(\Upsilon(nS) \)]
Charmonia in Pb + Pb: \((nS)\) suppression

- Expect \(\rho_{\text{PbPb}}^{O(nS)/O(1S)} = 1\) for non-prompt charmonia
 - originate from \(b\) quark loosing energy in the medium and hadronizing outside
- The double ratio indeed consistent with unity for non-prompt, and < 1 for prompt
 - consistent with the interpretation that the tighter bound \(J/\psi\) survives in the hot and dense medium with higher probability than more loosely bound \(\psi(2S)\)

\[\text{ATLAS} \quad \text{Pb+Pb, } \sqrt{s_{\text{NN}}} = 5.02 \text{ TeV, } 0.42 \text{ nb}^{-1} \]
\[\text{pp, } \sqrt{s} = 5.02 \text{ TeV, } 25 \text{ pb}^{-1} \]
\[9 < p_T < 40 \text{ GeV, } |y| < 2 \]

\(\text{Npart} \quad \text{Npart} \)
A selection of ATLAS results on heavy flavour production was presented

- Exotic states: $X(3872)$ measurement
- Associated production: prompt J/ψ pairs
- Heavy flavours in media: onia production in pPb and PbPb

Many interesting results not covered, e.g.

- b hadron pair production at $\sqrt{s} = 8$ TeV – JHEP 1711 (2017) 062
- J/ψ and $\psi(2S)$ production at $\sqrt{s} = 7, 8$ TeV – Eur. Phys. J. C 76 (2016) 283
- D mesons production at $\sqrt{s} = 7$ TeV – Nucl. Phys. B 907 (2016) 717
- Search for resonances in $B_s^0\pi\pm$ system – Phys. Rev. Lett. 120 (2018) 202007

Full Run-2 dataset is still be be fully exploited – stay tuned for many new results!
Backup slides
Non-prompt J/ψ fraction at $\sqrt{s} = 13$ TeV

- Analyse early sample of 6.4 pb^{-1} collected with di-muon triggers
- Very similar shape to $\sqrt{s} = 7$ TeV, but certain change compared to lower energies
 - The NP fraction grows steadily from 0.25 to 0.65 between 8 and 40 GeV
 - No sizeable dependence on rapidity
$m(\pi^+\pi^-)$ spectrum disfavours the phase space distribution, preferring higher masses.
Studying associated production

- Multiple possibilities to produce two objects A, B in a pp collision
 - Single Parton Scattering (SPS)
 - described by specific process cross-section σ_{AB}^{SPS} – higher-order "real" associated production
 - Double Parton Scattering (DPS)
 - individual process cross-sections σ_A, σ_B
 - effective cross-section σ_{eff} accounting for probability of the two processes to happen in a single pp collision

 $$\sigma_{AB} = \sigma_{AB}^{SPS} + \sigma_{AB}^{DPS} = \sigma_{AB}^{SPS} + \frac{\sigma_A\sigma_B}{\sigma_{eff}} \times \frac{1}{1 + \delta_{AB}}$$

- DPS/SPS separation is intrinsically uncertain
 - Limited knowledge of σ_{eff}
 - Higher-order SPS contributions can undermine assumptions
 - Experimentally one can measure N_A, N_B, N_{AB}, with different efficiencies, lumi etc

$$f_{DPS} = \frac{\sigma_{AB}^{DPS}}{\sigma_{AB}} = \frac{\sigma_A\sigma_B}{\sigma_{AB}\sigma_{eff}} \times \frac{1}{1 + \delta_{AB}} \sim \frac{1}{\sigma_{eff}} \times \frac{N_A N_B}{N_{AB}} \times \frac{1}{1 + \delta_{AB}}$$
Di-J/ψ: 2D mass fit

- Projections of the fit
 - $J/\psi_1 =$ higher-p_T
 - $J/\psi_2 =$ lower-p_T

- The peak is described with *Crystal Ball*, its parameters are obtained from fitting inclusive J/ψ sample
Di-J/ψ: prompt–prompt component extraction

- 1D projections of 2D fits to L_{xy}
 - L_{xy} resolution function determined from inclusive J/ψ sample
- Prompt–prompt fraction f_{PP} extracted in 4 fits, based on y region of each J/ψ
 - Per-event weights assigned as a function of L_{xy}
 - Corrected for the biases in differential distributions

![Graphs showing data and fits for L_{xy} distributions](image1)

![Graphs showing reconstructed f_{PP} distributions](image2)
Di-J/ψ: pile-up contribution

- To subtract J/ψ pairs from multiple collisions in a bunch crossing
- Fit to d_z
 - two gaussians for signal and background
 - determined from inclusive J/ψ sample
- Pile-up fraction found to be $< 1\%$
- Subtraction done using template from PU-enriched $d_z > 2.0 \text{ mm region}$

![ATLAS Data](image1)

- $\sqrt{s} = 8 \text{ TeV, 11.4 fb}^{-1}$
- $|y(J/\psi)| < 1.05$
- $|d_z| = 1.2 \text{ mm}$
B_c excited states

- No excited states of B_c reported previously
- The spectrum and properties of B_c family are predicted by non-relativistic potential models, perturbative QCD and lattice calculations
- Measurements of the ground and excited states → test of these predictions
 - 2S states are experimentally easy to search
 - Both 1S and 2S have pseudoscalar and vector components

Bc(2S) observation

- Search in $B_c \pi^+ \pi^-$ final state, B_c in $J/\psi \pi^+$ mode
 - Study the spectrum of $Q = m(B_c \pi^+ \pi^-) - m(B_c) - 2m(\pi^+)$
- A new state observed at $Q = 288.3 \pm 3.5\text{(stat.)} \pm 4.1\text{(syst.)}$ MeV (error-weighted mean of 7 and 8 TeV values)
 - Corresponds to a mass $6842 \pm 4\text{(stat.)} \pm 5\text{(syst.)}$ MeV, consistent with the predicted mass of $B_c(2S)$
 - Combined significance is 5.2σ
- Possible interpretations:
 - $B_c[2^3S_1] \to B_c^*(1S)(\to B_c \gamma)\pi^+ \pi^-$
 - $B_c[2^1S_0] \to B_c(1S)\pi^+ \pi^-$
- Similar analysis recently reported by LHCb (arXiv:1712.04094, JHEP 1801 (2018) 138)
 - no evidence, upper limits set
- Further study underway
A number of recent measurement of b production highlighted certain disagreements between models and data.

Especially $b\bar{b}$ production at small open angles is sensitive to the details of various calculations, but only loosely constrained experimentally.

Studies of $H \rightarrow b\bar{b}$ much rely on modelling of $b\bar{b}$ production in this region.

Use $11.5 \ fb^{-1}$ at $\sqrt{s} = 8 \ TeV$.

Measure $b\bar{b}$ pair production.

- one b is identified via $H_b \rightarrow J/\psi + X$ decay.
- the other via $H_b \rightarrow \mu + X$.

Differential cross-sections are measured in 10 kinematic observables.

Various predictions compared to data.

- different ME, PS models, 4-/5-flavour treatment; g splitting kernels.

New test of QCD, motivate the choice of calculations used to model b hadron production and their further tuning.
\[\sigma(B(\rightarrow J/\psi[\rightarrow \mu^+\mu^-] + X)B(\rightarrow \mu + X)) = 17.7 \pm 0.1(\text{stat}) \pm 2.0(\text{syst}) \text{ nb.} \]

- Full fiducial cross-section:

- Test various gluon splitting kernels in Pythia 8:

Pythia generally does not describe these shapes

\[p_T \]-based scale splitting kernels behave better for close-by \(b\bar{b} \)

QCD 2019, 2–5 Jun 2019

Semen Turchikhin

JINR
Comparison with other generator predictions:

- **HERWIG++**
- **MADGRAPH_aMC@NLOv2.2.2** interfaced to **PYTHIA 8**, 5- and 4-FNS
- **SHERPA 2.1.1** (5-FNS)

- **HERWIG++** reproduces ΔR and $\Delta \phi$ best
- 4-FNS works better for ΔR and $\Delta \phi$ than 5-FNS (on either sides VS data)
Comparison with other generator predictions:

- **HERWIG++**
- **MadGraph_aMC@NLOv2.2.2** interfaced to **Pythia 8**, 5- and 4-FNS
- **Sherpa 2.1.1** (5-FNS)

- MG and **Sherpa** has better agreement in Δy, y_{boost}
- Overall, 4-FNS provides better description of data; **Pythia** and **HERWIG++** are comparable and further tuning may improve