Muon identification and performance in the ATLAS experiment

Peter Kluit
On behalf of the ATLAS Collaboration

EPS-HEP2019 – Ghent Belgium
Muon Identification in ATLAS

- Two systems
- Inner Detector ID Tracker
 - Solenoidal B field (bends in phi, xy)
- Muon System MS
 - Toroidal B field (bends in theta, rz)

- Muons can be identified combining detectors
 - ID track – Calorimeter deposits
 - MS track
 - These two are fully independent

- ATLAS exploits different strategies – detector combinations - for muon identification.
Muon Identification

- Muon Spectrometer reconstruction
 - Segments (straight line track in MS station)
 - Standalone MS track (fitting segments)

- Standalone muons based on MS

- Tagged muons based on ID track “inside-out”
 - Matched with MS segment
 - Matched with Calorimeter deposits

- Combined Muons i.e. MS & ID
 - Fit ID track with MS track
 - Inside-out ID track – MS hits – MS segments – fit ID & MS hits
Physics with muons: working points

- **Loose**: Maximize reconstruction efficiency; uses all muon types
- **Medium**: Default selection for ATLAS; uses CB & MS muons
- **Tight**: Maximize purity; uses only CB & MS muons
- **Low-pT**: Maximize efficiency and fake-rejection for \(p_T < 5 \) GeV
- **High-pT**: Maximize momentum resolution for \(p_T > 100 \) GeV

Loose

Higgs \(\rightarrow 4\ell \)

ATLAS-CONF 2019-045

High-pT

Z’ \(\rightarrow \mu\mu \) search

arXiv 1903.06248v2

EPS-HEP2019 – Ghent Belgium

Peter Kluit (Nikhef)
Efficiencies for muons: Z tag and probe

Use high-statistics samples of $Z \rightarrow \mu\mu$

- Tag: Medium muon that fires the trigger
- Probe: e.g Calo-Tagged muon; mass Z
- Check Probe side if Loose, Medium, Tight, low-pT, high-pT muon (not Calo-Tagged) is found
- This gives efficiency $\varepsilon(\muon|\ID)$

- The ID tracking efficiency $\varepsilon(\ID)$ can also be measured using MS probes
- The full $\varepsilon(\muon)$ equals $\varepsilon(\ID) \varepsilon(\muon|\ID)$
Muon efficiencies: Z tag and probe

- Efficiency > 98% for medium \(|\eta|>0.1\) data/MC within 1-2%
- Calorimeter muons recover \(|\eta|<0.1\) systematics < 0.5%

Graph 1:
- Data 2018 • MC
- Tight muons
- Medium muons
- Loose muons

Graph 2:
- Data 2018
- MC
- ATLAS Preliminary
- \(\sqrt{s} = 13\) TeV, 59.9 fb\(^{-1}\)
- \(p_T>10\) GeV
- \(0.1<|\eta|<2.5\)

Graph 3:
- Data 2018
- MC
- ATLAS Preliminary
- \(\sqrt{s} = 13\) TeV, 59.9 fb\(^{-1}\)
- Medium muons
- 0.1<|\eta|<2.5

Graph 4:
- Data 2018
- MC
- ATLAS Preliminary
- \(\sqrt{s} = 13\) TeV, 59.9 fb\(^{-1}\)
- \(\eta\) systematics < 0.5%

EPS-HEP2019 – Ghent Belgium

Peter Kluit (Nikhef)
Muon momentum scale and resolution

- **Scale:**
 \[p_T' - p_T = \Delta s_0 + \Delta s_1 p_T \]
 - \(\Delta s_0 \): Energy loss in Calorimeter and Muon system
 - \(\Delta s_1 \): B field and radial distortions

- **Resolution:**
 \[\sigma'^2 - \sigma^2 = \left(\frac{\Delta p_0}{p_T} \right)^2 + \Delta p_1^2 + (\Delta p_2 p_T)^2 \]
 - \(\Delta p_0 \): Energy loss fluctuations
 - \(\Delta p_1 \): multiple scattering (B field and radial distortions)
 - \(\Delta p_2 \): detector resolution and misalignments

Use Z and J/ψ samples to measure scale and resolution in the Inner detector and Muon system

- **Z:**
 \(p_T \) 10-200 GeV
- **J/ψ:**
 \(p_T \) 3-25 GeV
- **Y:**
 \(p_T \) 5-50 GeV
Muon momentum scale and efficiencies

- scale systematics: 0.1-0.2%
- resolution data/MC 5-10%
- Validation of the results on the Upsilon (2019)

Muon isolation efficiencies and pile up

- The efficiency of different muon isolation algorithms can be measured by Z tag and probe
 - FixedCut: ΣE calorimeter or Σp track in a cone
 - FixedCutPflow: ΣE particle flow in a cone
 - FixedCutHighMu: combines all

- The efficiency can be kept reasonably constant at high μ
 - Loose isolation 0.5-1% and Tight 2-10%

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 43.8 fb$^{-1}$

Data 2017

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 43.8 fb$^{-1}$

Data 2017
Energy loss modeling in the track fit

- The expected energy loss is modeled using a tracking geometry description of the material X_0 in the tracker, calorimeters and muon system based on PDG formula’s.
 - Ionization: Landau distribution with a E_{MOP} and σ_L
 - Radiation: Exponential with E_{rad}
- The energy loss is also measured E_{meas} in the calorimeters with σ_{meas}
- Two regimes are defined $E_{\text{cut}} = 2.5 \sigma_{\text{meas}}$ IEEE (2007) 54 5
 - $E_{\text{meas}} - E_{\text{MOP}} - E_{\text{rad}} < E_{\text{cut}}$ use expected $E_{\text{MOP}} + E_{\text{rad}}$
 - $E_{\text{meas}} - E_{\text{MOP}} - E_{\text{rad}} > E_{\text{cut}}$ use measured E_{meas}
- Finally, from the E_{meas}, σ_{meas}, and E_{MOP}, an Energy constraint was calculated with asymmetric errors. The constraint is used in the track fit.
- The technique was implemented in 2017 and the tracking geometry description of the simulated muon energy loss was scrutinized. This resulted in an improved momentum resolution and a smaller E loss momentum correction term Δs_0.

PDG 2018
Alignment uncertainties in the track fit

- **AlignmentEffectOnTrack** AEOT has position and angle uncertainties on a group of hits (e.g. chamber)
- Typical sagitta (sys) uncertainty is 30-80 µm (RUN2) put in Middle Chamber
- Can also treat Barrel-Endcap alignment systematics (1 mm)
- Track fit performed using gaussian constraint on groups of hits with alignment uncertainties
- Implemented for the global χ^2 fitter

- Improves the track parameters e.g. momentum resolution by about 10%; uncertainties are more realistic
Conclusions

- Muon Identification in ATLAS
 - complementary ways to identify a muon
- Physics with muons
 - working points for a wide physics range
- Efficiencies for muons: Z tag and probe
 - data/MC within 1-2% and systematics < 0.5%
- Muon momentum scale and resolution
 - scale systematics: 0.1-0.2%
 - resolution data/MC 5-10%
- Muon isolation efficiencies and pile up
 - Efficiencies stable: Loose at 0.5-1% and Tight 2-10%
- Energy loss modeling in the track fit
- Alignment uncertainties in the track fit