Searches for supersymmetric particles with macroscopic or stable lifetimes using the ATLAS detector

Hidetoshi Otono (Kyushu University) on behalf of ATLAS collaboration

27th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY2019)

23th May, 2019
We haven’t found BSM yet, though

LHC gives us a great potential to find BSM.

Most of analyses focus on the particles (e.g., Higgs):

• Generating and decaying at interaction point of two beams, **AND**
• Going through the detectors with speed of light ($\beta = 1$).

However, this strategy could miss **Long-lived particles**.

We need to develop dedicated techniques to exploit full potential of the ATLAS detector!!
Physics making long-lived particles

Taking an example from π^\pm decay ($c\tau \sim 7.8$ m):

\[
\frac{\hbar}{\tau} = \frac{f_\pi^2}{256\pi m_\pi} \left[\frac{g^2}{M_W^2} \frac{m_\mu}{m_\pi} \left(m_\pi^2 - m_\mu^2 \right) \right]^2
\]

- Small coupling constant
- Helicity suppression
- Heavy intermediate particle
- Small mass difference

Effects shown above could appear in various new physics.
Signatures of long-lived particles

Muon system (MS)
- RPC, MDT, TGC, CSC

Calorimeter (Calo)
- LAr, Tile

Inner detector (ID)
- Pixel, SCT, TRT

Decay of (stopped) LLP inside Calo

Displaced vertex from LLP

Displaced late photon from LLP

Track of LLP with large dE/dx (and low velocity)
Recent searches in ATLAS experiment

Muon system (MS)
- RPC, MDT, TGC, CSC

Calorimeter (Calo)
- LAr, Tile

Inner detector (ID)
- Pixel, SCT, TRT

Decay of (stopped) LLP inside Calo

Displaced late photon from LLP

Track of LLP with large \(\text{dE/dx} \) (and low velocity)

Displaced vertex from LLP

NEW

SUSY-2016-32 – Accepted by PRD
13 TeV, 36 fb\(^{-1}\)

SUSY-2016-06 – JHEP 06 (2018) 022
13 TeV, 36 fb\(^{-1}\)

ATLAS-CONF-2019-006
13 TeV, 136 fb\(^{-1}\)
Search for long-lived $\tilde{\chi}^{\pm}$

\tilde{W}^0/\tilde{H}^0 LSP in SUSY are strong candidates for DM.

- **Thermal relic implicates** $M_{\tilde{W}} \sim 2.7$ TeV, or $M_{\tilde{H}} \sim 1.1$ TeV.
- **$\tilde{W}^{\pm}/\tilde{H}^{\pm}$** with small mass splitting makes its lifetime long:
 - \tilde{W}^{\pm}: $\Delta M \sim 160$ MeV $\rightarrow c\tau \sim 6$ cm
 - \tilde{H}^{\pm}: $\Delta M \sim 350$ MeV $\rightarrow c\tau \sim 1$ cm

Use “short” isolated high p_T tracks requiring 4 silicon hits:

- After Run2, Insertable B-layer (IBL) at $R = 3.2$ cm improves sensitivity.
Search for long-lived $\tilde{\chi}^\pm$

In pure-Wino LSP model, Chargino masses up to 460 GeV are excluded.

In pure-Higgsino LSP model, Chargino masses up to 152 GeV are excluded.
Heavy squark in Split SUSY could make \tilde{g} long-lived.

- Massive \tilde{g} leaves large dE/dx in ATLAS detector
- Pixel detector can provide dE/dx information.

Require 7 silicon hits (> 37 cm) with high dE/dx.

- Sensitive to longer lifetime than the disappearing track search.
- Look for isolated and high-momentum track.
- Mass of long-lived particles can be calculated by $p/\beta\gamma$.
Search using timing in Calo + Muon

Hadron Calo and Muon detectors

- Provide good timing resolution as a result of challenging calibration

$\rightarrow \beta < 0.75$ is required

- Use dE/dx information in Pixel as well.

The best sensitivity for stable particle!
Results of dE/dx based searches

SUSY-2016-32 – Accepted by PRD

Pixel dE/dx only

Gluino with 10 ns lifetime excluded up to 2 TeV
Mild excess: 2.4σ local in stable selection.

Stable Gluino excluded up to 2 TeV
Status of long-lived \tilde{g} search

\tilde{g} (R-hadron) \rightarrow qq $\tilde{\chi}_1^0$; $m(\tilde{\chi}_1^0) = 100$ GeV

March 2019

* Note that gently modified to make the event cleaning criteria 'safe' for LLPs

Interpretation from prompt decay search*

Displaced vertex

Pixel dE/dx

Pixel dE/dx + Calo + Muon

* RPC CL 2-6 jets arXiv:1712.02332 (\(\sqrt{s}=13\) TeV, 36 fb\(^{-1}\))
* RPC CL 2-6 jets ATLAS-CONF-2018-003 (\(\sqrt{s}=13\) TeV, 36 fb\(^{-1}\))
* Displaced vertices arXiv:1710.04901 (\(\sqrt{s}=13\) TeV, 33 fb\(^{-1}\))
* Pixel dE/dx arXiv:1808.04095 (\(\sqrt{s}=13\) TeV, 36.1 fb\(^{-1}\))
* Stable charged arXiv:1902.01636 (\(\sqrt{s}=13\) TeV, 31.6 fb\(^{-1}\))
* Stopped gluino arXiv:1310.6584 (\(\sqrt{s}=7,8\) TeV, 5.0, 23 fb\(^{-1}\))
Displaced vertex with muon

R-parity violation would make LSP long-lived.

• Benchmark: semi-leptonic decay of \tilde{t}

Trigger:

• Muon reconstructed in MS or Missing E_T

Signal selections:

• Veto material region using hadronic interaction
• DV with at least 3 tracks, and $M_{DV} > 20$ GeV
• Isolated non-prompt muon

Data-driven background estimation

• Cosmic-ray
• Heavy flavor decay
• Instrumental fakes
Simulated Signal Event
Top Squark Pair Production

\(m(\tilde{t}) = 1.5 \text{ TeV}, \quad \tau(\tilde{t}) = 1 \text{ ns} \)

\(\tilde{t} \rightarrow \mu j \)
Displaced vertex with muon

No excess observed neither in MET nor muon trigger selection.

Around ~0.1 ns lifetime, stop mass up to 1.75 TeV is excluded.
Conclusion

Long-lived particles appear in various physics models.

- Many types of unconventional signatures.
- Creative analysis techniques exploiting all aspects of our detector.
- Huge efforts done with LHC-Run2 data.

For long-lived particle search, the DV+muon analysis is the first result with LHC-Run2 full dataset.

No BSM yet, however we will come up with more searches with LHC Run-2 dataset soon!!