ATLAS Searches for Resonances Decaying to Boson Pairs

Enrique Kajomovitz Ken for ATLAS
Diboson Resonances

- Models trying to address the shortcomings of the Standard Model often feature new heavy resonances decaying to the Standard Model bosons
 - In many of these scenarios, the new resonances have masses in the TeV range and could be produced at the LHC
- The general idea to a search for these new resonances simply a bump hunt

This talk:
- Coherent picture emerging from the searches for new resonances decaying to bosons/leptons with 36/fb at \(\sqrt{s} = 13\text{TeV} \) with ATLAS (1808.02380)
- The VV search in hadronic final states with the full Run-2 dataset 140/fb at \(\sqrt{s} = 13 \text{ TeV} \) with ATLAS (1906.08589)
Dataset

ATLAS

- Preliminary
- $\sqrt{s} = 13$ TeV
- Delivered: 156 fb$^{-1}$
- Recorded: 147 fb$^{-1}$
- Physics: 139 fb$^{-1}$
- Good for Physics

Recorded Luminosity [pb$^{-1}$]

- Mean Number of Interactions per Crossing
- $\int L dt = 146.9$ fb$^{-1}$
- 2015: $\langle \mu \rangle = 13.4$
- 2016: $\langle \mu \rangle = 25.1$
- 2017: $\langle \mu \rangle = 37.8$
- 2018: $\langle \mu \rangle = 36.1$
- Total: $\langle \mu \rangle = 33.7$
Benchmarks

- Experimentally narrow
- Scalar
 - For VVJJ - Scalar Radion
- Vector Triplet
 - Production through DY or VBF
- Bulk-RS Graviton
- Vector bosons from decay are always Longitudinally polarized
Heavy Vector Triplet

broad phenomenological framework that allows to explore different scenarios with new heavy boson triplets \((W',Z')\) with approximately degenerate masses

\[
L_{W}^{\text{int}} = -g_q W^a_\mu \bar{q} k \gamma^\mu \frac{\sigma_a}{2} q_k - g_\ell W^a_\mu \bar{\ell} k \gamma^\mu \frac{\sigma_a}{2} \ell_k - g_H \left(W^a_\mu H^+ \frac{\sigma_a}{2} i D^\mu H + \text{h.c.} \right).
\]

Model A - Weakly coupled model with extended gauge symmetry

\(g_H = -0.56, \ g_f = -0.55\)

Production is DY

\(\text{BR}(VV/VH) \sim 2\%\) \(\text{BR}(\text{lep}) \sim 4\%\)

Model B - Composite Higgs Models

\(g_H = -2.9\) \(g_f = 0.14\)

Production is DY

\(\text{BR}(VV/VH) \sim 50\%\) \(\text{BR}(\text{lep}) \sim 0.2\%\)

Model C - VBF

\(g_H=1\) \(g_f = 0\)

The convention in the HVT paper

\(g_q = c_H \ g_V\)

\(g_f = g^2 \ c_f / g_V\)

<table>
<thead>
<tr>
<th>(m) [TeV]</th>
<th>HVT model A</th>
<th>HVT model B</th>
<th>HVT model C</th>
<th>Bulk RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(W')) [fb]</td>
<td>(\sigma(Z')) [fb]</td>
<td>(\sigma(W')) [fb]</td>
<td>(\sigma(Z')) [fb]</td>
<td>(\sigma(W')) [fb]</td>
</tr>
<tr>
<td>1.0</td>
<td>2.20 \times 10^4</td>
<td>1.12 \times 10^4</td>
<td>987</td>
<td>510</td>
</tr>
<tr>
<td>2.6</td>
<td>219</td>
<td>100</td>
<td>14.0</td>
<td>6.44</td>
</tr>
<tr>
<td>4.0</td>
<td>9.49</td>
<td>4.37</td>
<td>0.626</td>
<td>0.288</td>
</tr>
</tbody>
</table>
Channels

- Event selections for the different searches are orthogonal
 - leptons, jets and $E_{T\text{miss}}$

- Fully hadronic VV (two large-R jets) - Highest branching ratio, but large backgrounds, sensitive in particular at high mass

- Semileptonic VV - two leptons, or one / zero leptons with significant $E_{T\text{miss}}$, sensitive to different production mechanisms ggF/VBF

- Fully leptonic VV - clean, distinguishes ggF/VBF and sensitive at low masses

- Fully Hadronic VH - focus on $m > 1$ TeV, V-tagging + H-tagging

- Semileptonic VH - $m > 0.5$ TeV, resolved and merged H, priority to resolved. vvbb, lvbb, llbb

- Fully-leptonic - lv, ll, very clean signature - 0.2 to 5.5 TeV

V/H Tagging

- Large-R jets are R=1.0, anti-kT, Trimmed (0.2,5%)
- V tagging - Mass and D_2
- H tagging - Mass and b-tagging on R=0.2 track jets

<table>
<thead>
<tr>
<th>Channel</th>
<th>Diboson state</th>
<th>Leptons</th>
<th>Selection $E_{T\text{miss}}$</th>
<th>Jets</th>
<th>b-tags</th>
<th>VBF cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>$qqqq$</td>
<td>WW/WZ/ZZ</td>
<td>0</td>
<td>veto 2J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$vvqq$</td>
<td>WZ/ZZ</td>
<td>0</td>
<td>yes 1J</td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>$lvqq$</td>
<td>WW/WZ</td>
<td>1e, 1μ</td>
<td>yes 2j, 1J</td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>$llqq$</td>
<td>WZ/ZZ</td>
<td>2e, 2μ</td>
<td>2j, 1J</td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>$llvv$</td>
<td>ZZ</td>
<td>2e, 2μ</td>
<td>0</td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>$lvlv$</td>
<td>WW</td>
<td>1e+1μ</td>
<td>yes 0</td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>$lvll$</td>
<td>WZ</td>
<td>3e, 2e+1μ, 1e+2μ, 3μ</td>
<td>yes 0</td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>$llll$</td>
<td>ZZ</td>
<td>4e, 2e+2μ, 4μ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$qqbb$</td>
<td>WH/ZH</td>
<td>0</td>
<td>veto 2J</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$vvbb$</td>
<td>ZH</td>
<td>0</td>
<td>yes 2j, 1J</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$lvbb$</td>
<td>WH</td>
<td>1e, 1μ</td>
<td>yes 2j, 1J</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$llbb$</td>
<td>ZH</td>
<td>2e, 2μ</td>
<td>veto 2j, 1J</td>
<td>1, 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lv</td>
<td></td>
<td>1e, 1μ</td>
<td>yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ll</td>
<td></td>
<td>2e, 2μ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contributions from the different channels
Contributions to the HVT sensitivity

At high masses the electrons begin to merge, this degrades the semileptonic performance.
Bounds on VBF
Tomography of the HVT coupling space

ATLAS

- $\sqrt{s} = 13$ TeV
- 36.1 fb^{-1}
- $V' \rightarrow VV+VH$
- $\Gamma_m > 5\%$

ATLAS

- $\sqrt{s} = 13$ TeV
- 36.1 fb^{-1}
- $V' \rightarrow VV+VH+lv_{l+ll}$

ATLAS

- $\sqrt{s} = 13$ TeV
- 36.1 fb^{-1}
- $g_{H} = -0.56$
- $V' \rightarrow VV+VH+lv_{l+ll}$

ATLAS

- $\sqrt{s} = 13$ TeV
- 36.1 fb^{-1}
- $g_{H} = -0.56$
- $m(V) = 4$ TeV

ATLAS

- $\sqrt{s} = 13$ TeV
- 36.1 fb^{-1}
- $g_{H} = -0.56$
- $m(V) = 4$ TeV

- $\Gamma_m > 5\%$

ATLAS

- $\sqrt{s} = 13$ TeV
- 36.1 fb^{-1}
- $g_{H} = -0.56$
- $m(V) = 4$ TeV

ATLAS

- $\sqrt{s} = 13$ TeV
- 36.1 fb^{-1}
- $g_{H} = -0.56$
- $m(V) = 4$ TeV
Gravitons

![Graph showing the cross-section of $\sigma(pp \rightarrow G_{KK}^{-}V^{-}V^{-})$ for $G_{KK} \rightarrow WW + ZZ$ as a function of $m(G_{KK})$ in [TeV]].
Scalars

ATLAS
\(\sqrt{s} = 13 \) TeV, 36.1 fb\(^{-1} \)

- **Observed 95% CL limit**
- **Expected 95% CL limit**
 - Green: Expected ± 1σ
 - Yellow: Expected ± 2σ

ggF Scalar → WW + ZZ

VBF Scalar → WW + ZZ

\(m(\text{Scalar}) \) [TeV]
Search for VV in fully hadronic final states with 139/fb

- Main improvement in sensitivity with respect to previous versions is due to improvements in the jets

- Multiple clusters may match a track - each cluster contributes according to its pT fraction in all clusters matching
- Multiple tracks may match a cluster - so contribution of the cluster to a TCC is according to the relative pT fraction of a track
- Contribution of a track to a cluster is weighed according to the fraction of all clusters matching the track
Event Selection

• Events are recorded with unprescaled high-pT jet triggers that are fully efficient in the signal region considered.

• As in previous versions of the search, reject t-channel background by minimum requirement in pseudo-rapidity difference between jets $|\Delta y_{12}| < 1.2$.

• Events with badly reconstructed jets are rejected by requiring a balanced event $A = (p_{T1} - p_{T2}) / (p_{T1} + p_{T2}) < 0.15$.
Boson Tagging - variables

• Based on three variables Mjet, D2 and n_{trk}

• TCC inputs give huge improvement on the D2 resolution

• Optimization to maximize on significance

• n_{trk} - targeting larger number of tracks in background jets due to gluon/larger energy scale
Boson tagging - selection

(a)

(b)

(c)
Boson Tagging - Performance

(a) ATLAS Simulation $\sqrt{s}=13$ TeV

(b) Background rejection

(c) ATLAS Simulation $\sqrt{s}=13$ TeV

(d) Background rejection

W tagger

Pythia QCD Multijet

Z tagger

Pythia QCD Multijet
Control measurement for Tagging efficiency

Modeling of the tagging efficiency is evaluated in a control sample of V+jets
- One jet passes the D2 and n_{trk} selection
- Second jet is anti-tagged

Mass distribution from 50-200 GeV is fit with S+B model

Fit extracts overall yield, width and mean of W/Z is taken from MC shapes

JMS uncertainty is checked by varying the position of the W/Z peak and checking the impact on the signal yield - found to be negligible
Overall signal efficiencies
Background estimation

- Parametric fit of the background to avoid limitations of poor modeling or insufficient MC

\[\frac{dn}{dx} = p_1(1 - x)^{p_2-x}x^{-p_3} \]

- Required model complexity is assessed using a Wilks test

- Adequate modeling of the parametric shape is tested using control regions

- Background uncertainty driven by fit uncertainty
Results
Bounds
Summary

• Many extensions to the Standard Model predict new resonances in the TeV range that decay to boson pairs

• Unfortunately - we have not observed any evidence of such resonances

• At high masses the sensitivity to these resonances is driven by our ability to tag hadronic decays of jets

• ATLAS combination of 9 searches - gives a very complete picture on the experimental bounds on these heavy resonances at 36/fb

• At very high-masses the use of TCC results in impressive improvements to the boson tagging performance

• The Run-2 (139/fb) Fully hadronic search
 • No evidence for heavy resonances