Upgrade of the ATLAS Tile Calorimeter High Voltage System

A. Gomes, J. Augusto, F. Cuim, G. Evans, R. Fernandez, L. Gurriana, F. Martins
LIP, Portugal, Faculdade de Ciências da Universidade de Lisboa, Portugal, Instituto de Biofísica e Engenharia Biomédica, IBEB, Portugal, Inesc-ID, Portugal

HV Upgrade main motivations and goals

- LHC upgrade aims to a luminosity increase in Phase II (High Luminosity LHC scheduled to start in 2026)
- Ageing of components requires new HV system
- Better radiation tolerance for increased luminosity
- Improve the reliability and reduce maintenance needs
- Need to provide 9852 voltages in ranges [-470, -830] or [-590, -950] V
- Achieve the same HV performance of previous LHC runs
- Voltage stability required: 0.5 V rms
- Achieve the same HV performance of previous LHC runs
- Temperatures required: 0-83°C
- Achieve the same HV performance of previous LHC runs
- Time variations of optocoupler phototransistor redone in 48 channel prototype
- On/off mechanism ok for most of the channels but failing for a few channels
- Individual regulation loop: optocoupler + 2 transistors
- Remote regulation off-detector
- No radiation
- Permanent access for maintenance
- Up to 48 HV inputs per module supplied using 100 m long multewire cables
- Passive HV bus cards
- Communication with detector control system using Ethernet
- Transistors removed from loop control

Current High Voltage system

- Embedded, regulation in-detector in radiation hard board
- No access when running
- One single HV input per module
- Communication using Canbus

HVremote prototype lab tests

- 12 channel prototype
 - Just a modified version of the original HV Opto boards used in the Tile Calorimeter
 - Used to demonstrate the feasibility of the remote solution
- 24 channel prototype
 - 6U boards with 24 channels
 - One ethernet connection per board
 - Implemented on/off switch for every channel (design redone in 48 channel prototype to avoid effect of dark current variations of optocoupler phototransistor)

High Voltage for Phase II upgrade

- Remote regulation off-detector
- No radiation
- Permanent access for maintenance
- Up to 48 HV inputs per module supplied using 100 m long multwire cables
- Passive HV bus cards
- Communication with detector control system using Ethernet
- Transistors removed from loop control

Other HV system components

Cable

- 100 m long cables will connect the HVremote boards to the detector.
- Worst constraint: maximum diameter of 17 mm for the cables with 32 pairs of wires that are used for the Extended Barrel modules.
- Prototypes available from 2 companies are being tested.
- DB25 connectors are also being tested.

HV Bus

- To be used inside the detector as extension of the cables. Fully passive (only 500 Ω resistors and connectors), 4 layers to have HV tracks protected in the inner layers. Prototypes being tested.

HV supplies

- Board with DC-DC converters that produce the primary high voltage (-830 or -950 V), and with on/off switches for the HVremote boards.
- First prototype in production.

Crates

- 6U crates to house the HVremote boards, HV supply boards, control board and low voltage power supplies (+24 V, +12 V, -12V).
- Currently in design phase.

References

- F. Vazelli, Performance of a remote High Voltage power supply for the Phase II upgrade of the ATLAS Tile Calorimeter, JINST 11 (2016) C02050