Search for the Higgs boson decays $H \rightarrow ee$ and $H \rightarrow e\mu$ in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

Searches for the Higgs boson decays $H \rightarrow ee$ and $H \rightarrow e\mu$ are performed using data corresponding to an integrated luminosity of 139 fb$^{-1}$ collected with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV at the LHC. No significant signals are observed, in agreement with the Standard Model expectation. For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching fraction $\mathcal{B}(H \rightarrow ee)$ is 3.6×10^{-4} (3.5×10^{-4}) and on $\mathcal{B}(H \rightarrow e\mu)$ is 6.1×10^{-5} (5.8×10^{-5}). These results represent improvements by factors of about five and six on the previous best limits on $\mathcal{B}(H \rightarrow ee)$ and $\mathcal{B}(H \rightarrow e\mu)$ respectively.
1 Introduction

The discovery of a heavy scalar particle by ATLAS and CMS [1, 2] provided experimental confirmation of the Englert–Brout–Higgs mechanism [3–8], which spontaneously breaks electroweak (EW) gauge symmetry and generates mass terms for the W and Z gauge bosons. In the Standard Model (SM) the fermion masses are generated via Yukawa interactions. The Yukawa couplings to third-generation fermions were determined by measurements of Higgs boson production and decays [9–15], and found to be in agreement with the expectations of the SM. However, there is currently no evidence of Higgs boson decays into first- or second-generation quarks or leptons.

This Letter presents the first ATLAS searches for $H \to ee$ and for the lepton-flavour-violating decay $H \to e\mu$ using the full Run 2 dataset of proton–proton (pp) collisions at a centre-of-mass energy of $\sqrt{s} = 13$ TeV, with an integrated luminosity of 139 fb$^{-1}$. The CMS Collaboration has previously performed searches for $H \to ee$ [16] and $H \to e\mu$ [17] using LHC Run 1 pp data at $\sqrt{s} = 8$ TeV corresponding to an integrated luminosity of 19.7 fb$^{-1}$.

The SM predicts a $H \to ee$ branching fraction of about 5×10^{-9}, arising from diagrams which depend on the electron Yukawa coupling Y_{ee}, which is far below the sensitivity of the LHC experiments; contributions from diagrams that do not depend on Y_{ee} and are non-resonant e.g. $H \to eey$, are expected to be significantly larger, although still much smaller than present sensitivity.

The LHC offers the best constraint on Y_{ee} [18], which may be larger than predicted by the SM. The SM forbids lepton-flavour-number-violating Higgs boson decays. There are strong indirect constraints on the off-diagonal $Y_{e\mu}$ coupling, the strongest derived from limits on the branching fraction of $\mu \to e\gamma$ and the electric dipole moment of the electron [19]. However, these indirect constraints assume SM values for the as yet unmeasured Y_{ee} and $Y_{\mu\mu}$ Yukawa couplings. Searching for $H \to e\mu$ allows $Y_{e\mu}$ to be constrained directly.

Both analyses presented in this Letter closely follow the search for the SM Higgs boson decay $H \to \mu\mu$ [20]. The signal is separated from the background primarily by identifying a narrow peak in the distribution of the invariant mass of the two leptons $m_{\ell\ell}$ corresponding to the mass of the Higgs boson of 125 GeV [21]. The background in the ee search is dominated by Drell–Yan (DY) Z/γ^* production, with smaller contributions from top-quark pair ($t\bar{t}$) and diboson production (ZZ, WZ and WW). In the $e\mu$ search, a much smaller yield of SM background events is expected. The DY background only contributes through decays of $Z/\gamma^* \to \tau\tau \to e\nu_e \nu_e \nu_\mu \nu_\mu$. Thus the production of top quarks, dibosons (mainly through $WW \to e\nu_e \mu\nu_\mu$), W+jets and multijet events, with jets misidentified as leptons, are more important than in the ee search.

2 ATLAS detector

The ATLAS experiment [22–24] at the LHC is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and a near 4π coverage in solid angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Angular distance is measured in units of $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$.

The inner tracking detector (ID) covers the pseudorapidity range $|\eta| < 2.5$. It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile calorimeter in the central pseudorapidity range $|\eta| < 1.7$ measures the energies of hadrons. The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to $|\eta| = 4.9$. The muon spectrometer (MS) surrounds the calorimeters up to $|\eta| = 2.7$ and is based on three large air-core toroidal superconducting magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a system of precision tracking chambers and fast detectors for triggering.

A two-level trigger system is used to select events [25]. It consists of a first-level trigger implemented in hardware and using a subset of the detector information to reduce the event rate to 100 kHz. This is followed by a software-based high-level trigger that employs algorithms similar to those used offline and reduces the rate of accepted events to 1 kHz.

3 Simulated event samples

Samples of simulated signal events with a Higgs boson mass of $m_H = 125$ GeV were generated as described below and processed through the full ATLAS detector simulation [26] based on GEANT4 [27]. Higgs boson production via the gluon–gluon fusion (ggF) process was simulated using the POWHEG NNLOPS program [28–35] with the PDF4LHC15 set of parton distribution functions (PDFs) [36]. The Higgs boson rapidity in the simulation was reweighted to achieve next-to-next-to-leading-order (NNLO) accuracy in QCD [37]. Higgs boson production via vector-boson fusion (VBF) and with an associated vector boson (VH) were generated at next-to-leading-order (NLO) accuracy in QCD using the POWHEG-BOX program [38–40]. The ZH samples were simulated for processes with quark–quark initial states, and the small contribution from gluon–gluon initial states is accounted for in the normalisation of the ZH cross section. The parton-level events were processed with PYTHIA8 [41] for the decay of the Higgs bosons into the ee or $e\mu$ final states and to simulate parton showering, hadronisation and the underlying event, using the AZNLO set of tuned parameters [42]. All samples were normalised to state-of-the-art predictions using higher-order QCD and electroweak corrections [43–66]. The effects arising from multiple pp collisions in the same or neighbouring bunch crossings (pile-up) were included in the simulation by overlaying inelastic pp interactions generated with PYTHIA8 using the NNPDF2.3LO set of PDFs [67] and the A3 set of tuned parameters [68]. Events were reweighted such that the distribution of the average number of interactions per bunch crossing matches that observed in data. Simulated events were corrected to reflect the lepton energy scale and resolution, and trigger, reconstruction, identification and isolation efficiencies measured in data.

To evaluate the uncertainty in the background modelling in the ee channel, a dedicated fast simulation for the dominant DY background was used to produce a sample of 10^9 events, equivalent to 40 times the integrated luminosity of the data. For this sample, $Z/\gamma^* + (0,1)$-jet events were generated inclusively at NLO accuracy using POWHEG-BOX [69] with the CT10 PDF set [70]. Additional $Z/\gamma^* + 2$-jet events were generated with ALPGEN [71] at leading-order accuracy with the CTEQ6L1 PDF set [72]. The events were interfaced to PHOTOS [73] to simulate QED final-state radiation. The effects of pile-up and a fast parameterisation of the response of the detector to electrons and jets, using simple smearing functions, was then applied to the generated events.
4 Event selection

Events are recorded using triggers that require either an isolated electron or an isolated muon above a transverse momentum (p_T) threshold of 26 GeV [25, 74]. Electrons are reconstructed in the range $|\eta| < 2.47$ from clusters of energy deposits in the calorimeter matched to a track in the inner detector [75]. Muons are reconstructed in the range $|\eta| < 2.5$ by combining tracks in the ID either with tracks in the MS or, for $|\eta| < 0.1$, with calorimeter energy deposits consistent with a muon [76]. The electrons and muons are required to be associated with the primary pp collision vertex, which is defined as the collision vertex with largest sum of p_T^2 of tracks, and to be isolated from other tracks [75, 76]. Each event must contain either exactly two electrons or an electron and a muon. One lepton must have $p_T > 27$ GeV to ensure a high trigger efficiency and the other must be of opposite charge and have $p_T > 15$ GeV.

Requirements on jets are used in this analysis to suppress background and define a category that has a high sensitivity to signal produced in the VBF production mode. Jets in the range $|\eta| < 4.5$ and $p_T > 30$ GeV are reconstructed from energy deposits in the calorimeter [77], using the anti-k_T algorithm [78, 79] with a radius parameter of 0.4. Jets from pile-up interactions are suppressed using a multivariate likelihood that uses tracking information [80].

Backgrounds with top quarks are suppressed by identifying b-hadrons and neutrinos in the final state. Jets in the range $|\eta| < 2.5$ containing b-hadrons are identified as b-jets using a multivariate algorithm [81]. Events are rejected if there is at least one identified b-jet. Different working points are used for the ee and $e\mu$ channels because the latter has a larger top-quark background. For the ee ($e\mu$) channel the b-jet identification efficiency is about 60% (85%) with a rejection factor of about 1200 (25) for light-flavour jets [82]. Neutrinos produced in semileptonic top-quark decays escape detection and lead to missing transverse momentum E_T^{miss}, reconstructed as the magnitude of the vector sum of the transverse momenta of all calibrated leptons and jets and additional ID tracks associated with the primary vertex (soft term) [83]. Backgrounds with significant E_T^{miss} are suppressed by requiring $E_T^{\text{miss}}/\sqrt{H_T} < 3.5$ (1.75) GeV$^{1/2}$ for the ee ($e\mu$) channel, where H_T is the scalar sum of the transverse momenta of leptons and jets and $\sqrt{H_T}$ is proportional to the E_T^{miss} resolution.

Background from the process $H \rightarrow \gamma\gamma$, where the photons are misreconstructed as electrons, is studied with simulated events and found to contribute about 0.07% in the ee channel for a signal branching fraction at the expected limit. It is therefore neglected in the rest of the analysis.

The search is performed in the range of dilepton invariant mass $110 < m_{\ell\ell} < 160$ GeV, which allows the background to be determined with analytic functions constrained by the sidebands to either side of the potential signal.

The event sample passing the basic lepton selection is divided into seven (eight) categories for the ee ($e\mu$) channel that differ in their expected signal-to-background ratios, to improve the overall sensitivity of the search. These categories are based on those used in Ref. [20], and are found to provide good sensitivity in the present analyses.

First, a low-p_T lepton category ‘Low p_T^ℓ’ is defined in the $e\mu$ channel with events in which the subleading lepton has $p_T < 27$ GeV. This region has a significant fraction of events in which either reconstructed lepton is of non-prompt origin or is a misidentified photon or hadron, hereafter called a fake lepton. These events are not separated out in the ee channel because the relative contribution from fake leptons is smaller. A category enriched in events from VBF production is defined from the remaining events by selecting
those containing two jets with pseudorapidities of opposite signs, a pseudorapidity separation $|\Delta \eta_{jj}| > 3$ and a dijet invariant mass $m_{jj} > 500$ GeV.

Events that fail to meet the criteria of the ‘Low $p_T^{\ell\ell}$’ and VBF categories are classified as ‘Central’ if the pseudorapidities of both leptons are $|\eta^{\ell}| < 1$ or as ‘Non-central’ otherwise. For each of these two categories, three ranges in the dilepton transverse momentum $p_T^{\ell\ell}$ are considered: ‘Low $p_T^{\ell\ell}$’ ($p_T^{\ell\ell} \leq 15$ GeV), ‘Mid $p_T^{\ell\ell}$’ ($15 < p_T^{\ell\ell} \leq 50$ GeV), and ‘High $p_T^{\ell\ell}$’ ($p_T^{\ell\ell} > 50$ GeV).

5 Signal and background parameterisation

Analytic functions are used to describe the $m_{\ell\ell}$ distributions for both the signal and the background. The $H \rightarrow ee$ and $H \rightarrow e\mu$ signals considered are narrow resonances with a mass and a width set to the SM values of $m_H = 125$ GeV and 4.1 MeV respectively. The observed signal shapes are thus determined by detector resolution effects and are parameterised as a sum of a Crystal Ball function (F_{CB}) [84] and a Gaussian function (F_{GS}) following Ref. [20]:

$$P_S(m_{\ell\ell}) = f_{\text{CB}} \times F_{\text{CB}}(m_{\ell\ell}|m_{\text{CB}}, \sigma_{\text{CB}}, \alpha, n)$$

$$+ (1 - f_{\text{CB}}) \times F_{\text{GS}}(m_{\ell\ell}|m_{\text{GS}}, \sigma_{\text{GS}}^S).$$

The parameters α and n define the power-law tail of the F_{CB} distribution, while m_{CB}, m_{GS}, σ_{CB}, and σ_{GS}^S denote the F_{CB} mean value, F_{GS} mean value, F_{CB} width, and F_{GS} width respectively. The relative normalisation between the terms is governed by the parameter f_{CB}. These parameters are determined by fitting the simulated signal $m_{\ell\ell}$ distribution in each category.

The background parameterisation for the ee channel follows Ref. [20] as the background is very similar. The m_{ee} distributions in each category are described by a sum of a Breit–Wigner function (F_{BW}) convolved with a F_{GS}, and an exponential function divided by a cubic function:

$$P_B(m_{ee}) = f \times [F_{\text{BW}}(m_{ee}|m_{\text{BW}}, \Gamma_{\text{BW}}) \otimes F_{\text{GS}}(m_{ee}|\sigma_{\text{GS}}^B)]$$

$$+ (1 - f) \times C e^{A m_{ee}/m_{ee}^3},$$

where f represents the fraction of the F_{BW} component when each individual component is normalised to unity and C is a normalisation coefficient. The σ_{GS}^B parameter in each category is fixed to the corresponding average $m_{\ell\ell}$ resolution as determined from simulated signal events. For all the categories, the F_{BW} parameters are fixed to $m_{\text{BW}} = 91.2$ GeV and $\Gamma_{\text{BW}} = 2.49$ GeV [85]. The parameters f and A and the overall normalisation are left free to be determined in the fit and uncorrelated between different categories.

A Bernstein polynomial of degree two is used to parameterise the $m_{e\mu}$ distribution of the background in each of the eight categories in the $e\mu$ channel, with parameters uncorrelated across categories. The choice of background function is validated by an F-test considering Bernstein polynomials of first, second and third degree.

The signal yield, which is allowed to be positive or negative, is constrained using separate binned maximum-likelihood fits to the observed $m_{\ell\ell}$ distributions in the range $110 < m_{\ell\ell} < 160$ GeV in the two channels. The fits are performed using the sum of the signal and background models (‘$S + B$ model’) and are performed simultaneously in all the categories. In addition to the background-model parameters
6 Systematic uncertainties

The signal expectation is subject to experimental and theoretical uncertainties, which are correlated across the categories.

The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [86], obtained using the LUCID-2 detector [87] for the primary luminosity measurements. Other sources of experimental uncertainty include the electron and muon trigger, reconstruction, identification and isolation efficiencies [75, 76], the b-jet identification efficiency [81], the pile-up modelling [88], the determination of the E_T^{miss} soft term [83], and the jet energy scale and resolution [89]. The uncertainties in the electron energy scale and resolution [89] and in the muon momentum scale and resolution [76] affect the shape of the signal distribution as well as the signal acceptance.

The total experimental uncertainty in the predicted signal yield in each ggF category is between 2% and 3% for the ee channel and between 4% and 6% for the $e\mu$ channel. It is dominated by the luminosity, E_T^{miss} soft term and pile-up effects, and the last two contributions are larger in the $e\mu$ analysis due to the tighter $E_T^{\text{miss}}/\sqrt{H_T}$ requirement. The experimental uncertainty in the VBF category is between 7% and 15% for the ee channel and between 6% and 22% for the $e\mu$ channel, due to larger contributions from the jet energy scale and resolution.

The theoretical uncertainties in the production cross section of the Higgs boson are taken from Ref. [43]. In addition, theoretical modelling uncertainties affecting the acceptance for the signals are calculated separately for the ggF and VBF Higgs boson production processes in each analysis category. The uncertainty in the acceptance for the VH process is neglected. The effects of missing higher-order terms in the perturbative QCD calculations are estimated by varying the renormalisation and factorisation scales. For the ggF process the uncertainties are approximated as two correlated sources that range from around 1% to 11% for the different analysis categories in both channels. For the VBF process the uncertainties in the acceptance due to the QCD scales are found to be small. The effects of uncertainties in the parton distribution functions and the value of α_S are estimated using the PDF4LHC15 recommendations [36] and found to be very small. The uncertainty in the modelling of the parton shower, underlying event, and hadronisation is assessed by comparing the acceptance of signal events showered by PYTHIA with that of events showered by HERWIG [90, 91]. The total variations due to these uncertainties range from less than 1% to 11% for the ggF signal process and from 1% to 8% for the VBF signal process depending on the analysis category.

Due to the very different yields and composition of the backgrounds in the ee and $e\mu$ channels, the potential bias on the measured signal from the choice of background function is assessed in different ways. In the ee channel the $S + B$ fit is repeated using the high-statistics DY-background fast simulation instead of the data. The number of signal events in each category obtained from the fit is used as a systematic uncertainty following the method of Ref. [1]. To be conservative, the maximum absolute deviation from zero for a signal mass between 120 and 130 GeV is taken. The uncertainty is treated as uncorrelated between categories. The background modelling uncertainty is implemented as a set of additional nuisance parameters acting on the signal normalisation in each category. The effect of this uncertainty on the expected limit is about 8%. In the $e\mu$ channel the background modelling uncertainty is estimated by changing the fit function to a standard polynomial and evaluating the difference in signal yield compared...
with the default fit to a sample of simulated background events [92–94]. The effect of this uncertainty on the expected limit is less than 1%.

7 Results

In the ee channel, the observed dielectron mass spectra are divided into 200 m_{ee} bins in each of the seven categories and then fitted simultaneously using a profile-likelihood-ratio test statistic [95]. The systematic uncertainties affecting the signal normalisation and shape across categories are parameterised by making the likelihood function depend on dedicated nuisance parameters, constrained by additional Gaussian or log-normal probability terms. The Higgs boson production cross sections are assumed to be as predicted in the Standard Model. The data and expectation for all categories summed together are shown in Figure 1. No evidence of the decay $H \rightarrow ee$ is observed. The best-fit value of the branching fraction is $(0.0 \pm 1.7(\text{stat.}) \pm 0.6(\text{syst.})) \times 10^{-4}$. The uncertainty is dominated by the statistical uncertainty in the data, while the largest systematic contribution is from the background modelling uncertainty. The observed (expected) upper limit on the branching fraction, computed using a modified frequentist CL_s method [95, 96], at the 95% confidence level, is found to be 3.6×10^{-4} (3.5×10^{-4}). This result is a significant improvement on the previous limit by CMS of 1.9×10^{-3} based on the Run 1 dataset [16].

In the $e\mu$ channel, a similar fit is performed to the observed electron–muon mass spectra divided into 50 $m_{e\mu}$ bins in each of the eight categories. The data and expectation for all categories summed together are shown in Figure 1. No evidence of the decay $H \rightarrow e\mu$ is observed, with a best-fit value of the branching fraction of $(0.4 \pm 2.9(\text{stat.}) \pm 0.3(\text{syst.})) \times 10^{-5}$. The uncertainty is dominated by the statistical uncertainty in the data, while the largest systematic contribution is from the Higgs boson production cross-section uncertainty. The observed (expected) upper limit at the 95% confidence level is found to be 6.1×10^{-5} (5.8×10^{-5}). This result is a significant improvement on the previous limit by CMS of 3.5×10^{-4} based on the Run 1 dataset [17].

8 Conclusion

Searches are performed for the Higgs boson decays $H \rightarrow ee$ and $H \rightarrow e\mu$ using 139 fb$^{-1}$ of data collected with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV at the LHC. No evidence of either decay is found and observed (expected) upper limits at the 95% confidence level on the branching fractions of 3.6×10^{-4} (3.5×10^{-4}) for $\mathcal{B}(H \rightarrow ee)$ and 6.1×10^{-5} (5.8×10^{-5}) for $\mathcal{B}(H \rightarrow e\mu)$ are obtained for a Higgs boson with mass 125 GeV. These are the first such searches made by the ATLAS Collaboration and are considerable improvements on previous measurements.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; S STC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and
Figure 1: Dilepton invariant mass $m_{\ell\ell}$ for all categories summed together for the ee channel (left) and the $e\mu$ channel (right) compared with the background-only model. The signal parameterisations with branching fractions set to $\mathcal{B}(H \rightarrow ee) = 2\%$ and $\mathcal{B}(H \rightarrow e\mu) = 0.05\%$ are also shown (red line). The bottom panels show the difference between data and the background-only fit.

CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ‘, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [97].
References

1Department of Physics, University of Adelaide, Adelaide; Australia.
2Physics Department, SUNY Albany, Albany NY; United States of America.
3Department of Physics, University of Alberta, Edmonton AB; Canada.
4(a)Department of Physics, Ankara University, Ankara; (b)Istanbul Aydin University, Istanbul; (c)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.
8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10Physics Department, National Technical University of Athens, Zografou; Greece.
11Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12(a)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul; (b)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul; (c)Department of Physics, Bogazici University, Istanbul; (d)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15(a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b)Physics Department, Tsinghua University, Beijing; (c)Department of Physics, Nanjing University, Nanjing; (d)University of Chinese Academy of Science (UCAS), Beijing; China.
16Institute of Physics, University of Belgrade, Belgrade; Serbia.
17Department for Physics and Technology, University of Bergen, Bergen; Norway.
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota; Colombia.
23(a)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica; (b)INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universität Bonn, Bonn; Germany.
25Department of Physics, Boston University, Boston MA; United States of America.
26Department of Physics, Brandeis University, Waltham MA; United States of America.
27(a)Transilvania University of Brasov, Brasov; (b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi; (d)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e)University Politehnica Bucharest, Bucharest; (f)West University in Timisoara, Timisoara; Romania.
28(a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31California State University, CA; United States of America.
32Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33(a)Department of Physics, University of Cape Town, Cape Town; (b)Department of Mechanical
Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.
67\(^{(a)}\)INFN Sezione di Lecce;\(^{(b)}\)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.
68\(^{(a)}\)INFN Sezione di Milano;\(^{(b)}\)Dipartimento di Fisica, Università di Milano, Milano; Italy.
69\(^{(a)}\)INFN Sezione di Napoli;\(^{(b)}\)Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
70\(^{(a)}\)INFN Sezione di Pavia;\(^{(b)}\)Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
71\(^{(a)}\)INFN Sezione di Pisa;\(^{(b)}\)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
72\(^{(a)}\)INFN Sezione di Roma;\(^{(b)}\)Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
73\(^{(a)}\)INFN Sezione di Roma Tor Vergata;\(^{(b)}\)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.
74\(^{(a)}\)INFN Sezione di Roma Tre;\(^{(b)}\)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.
75\(^{(a)}\)INFN-TIFPA;\(^{(b)}\)Università degli Studi di Trento, Trento; Italy.
76\(^{(a)}\)Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.
77\(^{(a)}\)University of Iowa, Iowa City IA; United States of America.
78\(^{(a)}\)Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
79\(^{(a)}\)Joint Institute for Nuclear Research, Dubna; Russia.
80\(^{(a)}\)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora;\(^{(b)}\)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro;\(^{(c)}\)Universidade Federal de São João del Rei (UFSJ), São João del Rei;\(^{(d)}\)Instituto de Física, Universidade de São Paulo, São Paulo; Brazil.
81\(^{(a)}\)KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
82\(^{(a)}\)Graduate School of Science, Kobe University, Kobe; Japan.
83\(^{(a)}\)AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow;\(^{(b)}\)Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
84\(^{(a)}\)Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
85\(^{(a)}\)Faculty of Science, Kyoto University, Kyoto; Japan.
86\(^{(a)}\)Kyoto University of Education, Kyoto; Japan.
87\(^{(a)}\)Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.
88\(^{(a)}\)Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
89\(^{(a)}\)Physics Department, Lancaster University, Lancaster; United Kingdom.
90\(^{(a)}\)Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
91\(^{(a)}\)Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.
92\(^{(a)}\)School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
93\(^{(a)}\)Department of Physics, Royal Holloway University of London, Egham; United Kingdom.
94\(^{(a)}\)Department of Physics and Astronomy, University College London, London; United Kingdom.
95\(^{(a)}\)Louisiana Tech University, Ruston LA; United States of America.
96\(^{(a)}\)Fysiska institutionen, Lunds universitet, Lund; Sweden.
97\(^{(a)}\)Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France.
98\(^{(a)}\)Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.
99\(^{(a)}\)Institut für Physik, Universität Mainz, Mainz; Germany.
100\(^{(a)}\)School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.
101\(^{(a)}\)CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
102\(^{(a)}\)Department of Physics, University of Massachusetts, Amherst MA; United States of America.
103\(^{(a)}\)Department of Physics, McGill University, Montreal QC; Canada.
104\(^{(a)}\)School of Physics, University of Melbourne, Victoria; Australia.
Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.

Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.

Group of Particle Physics, University of Montreal, Montreal QC; Canada.

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.

Institute for Theoretical and Experimental Physics of the National Research Centre Kurchatov Institute, Moscow; Russia.

National Research Nuclear University MEPhI, Moscow; Russia.

D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.

Nagasaki Institute of Applied Science, Nagasaki; Japan.

Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.

Department of Physics, Northern Illinois University, DeKalb IL; United States of America.

Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; Novosibirsk State University Navosibirsk; Russia.

Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.

Department of Physics, New York University, New York NY; United States of America.

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.

Ohio State University, Columbus OH; United States of America.

Faculty of Science, Okayama University, Okayama; Japan.

Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.

Department of Physics, Oklahoma State University, Stillwater OK; United States of America.

Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.

Center for High Energy Physics, University of Oregon, Eugene OR; United States of America.

LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.

Graduate School of Science, Osaka University, Osaka; Japan.

Department of Physics, University of Oslo, Oslo; Norway.

Department of Physics, Oxford University, Oxford; United Kingdom.

LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.

Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.

Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.

Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisbon; Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisbon; Departamento de Física, Universidade de
Coimbra, Coimbra;\(^{(d)}\)Centro de Física Nuclear da Universidade de Lisboa, Lisbon;\(^{(e)}\)Departamento de Física, Universidade do Minho, Braga;\(^{(f)}\)Universidad de Granada, Granada (Spain);\(^{(g)}\)Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica;\(^{(h)}\)Av. Rovisco Pais, 1 1049-001 Lisbon, Portugal; Portugal.

\(^{141}\)Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.

\(^{142}\)Czech Technical University in Prague, Prague; Czech Republic.

\(^{143}\)Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.

\(^{144}\)Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.

\(^{145}\)IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.

\(^{146}\)Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.

\(^{147}(a)^{}\)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;\(^{(b)}\)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.

\(^{148}\)Department of Physics, University of Washington, Seattle WA; United States of America.

\(^{149}\)Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.

\(^{150}\)Department of Physics, Shinshu University, Nagano; Japan.

\(^{151}\)Department Physik, Universität Siegen, Siegen; Germany.

\(^{152}\)Department of Physics, Simon Fraser University, Burnaby BC; Canada.

\(^{153}\)SLAC National Accelerator Laboratory, Stanford CA; United States of America.

\(^{154}\)Physics Department, Royal Institute of Technology, Stockholm; Sweden.

\(^{155}\)Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.

\(^{156}\)Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.

\(^{157}\)School of Physics, University of Sydney, Sydney; Australia.

\(^{158}\)Institute of Physics, Academia Sinica, Taipei; Taiwan.

\(^{159}(a)^{}\)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;\(^{(b)}\)High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.

\(^{160}\)Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.

\(^{161}\)Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.

\(^{162}\)Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

\(^{163}\)International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.

\(^{164}\)Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.

\(^{165}\)Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

\(^{166}\)Tomsk State University, Tomsk; Russia.

\(^{167}\)Department of Physics, University of Toronto, Toronto ON; Canada.

\(^{168}(a)^{}\)TRIUMF, Vancouver BC;\(^{(b)}\)Department of Physics and Astronomy, York University, Toronto ON; Canada.

\(^{169}\)Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.

\(^{170}\)Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.

\(^{171}\)Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.

\(^{172}\)Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

\(^{173}\)Department of Physics, University of Illinois, Urbana IL; United States of America.

\(^{174}\)Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.

\(^{175}\)Department of Physics, University of British Columbia, Vancouver BC; Canada.
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.

Department of Physics, University of Warwick, Coventry; United Kingdom.

Waseda University, Tokyo; Japan.

Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel.

Department of Physics, University of Wisconsin, Madison WI; United States of America.

Department of Physics, Yale University, New Haven CT; United States of America.

Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.

Also at CERN, Geneva; Switzerland.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona; Spain.

Also at Department of Applied Physics and Astronomy, University of Sharjah, Sharjah; United Arab Emirates.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.

Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

Also at Department of Physics and Astronomy, St. Petersburg State Polytechnical University, St. Petersburg; Russia.

Also at Department of Physics, Stanford University, Stanford CA; United States of America.

Also at Department of Physics, University of Adelaide, Adelaide; Australia.

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

Also at Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

Also at Department of Physics, University of Toronto, Toronto ON; Canada.

Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine; Italy.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

Also at Giresun University, Faculty of Engineering, Giresun; Turkey.

Also at Graduate School of Science, Osaka University, Osaka; Japan.

Also at Hellenic Open University, Patras; Greece.

Also at Institució Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.
ae Also at Institute of Particle Physics (IPP), Vancouver; Canada.
af Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
ag Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.
ah Also at Joint Institute for Nuclear Research, Dubna; Russia.
aI Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
aj Also at Louisiana Tech University, Ruston LA; United States of America.
ak Also at Manhattan College, New York NY; United States of America.
al Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
am Also at National Research Nuclear University MEPhI, Moscow; Russia.
an Also at Physics Department, An-Najah National University, Nablus; Palestine.
ao Also at Physics Dept, University of South Africa, Pretoria; South Africa.
ap Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
aq Also at School of Physics, Sun Yat-sen University, Guangzhou; China.
ar Also at The City College of New York, New York NY; United States of America.
as Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
au Also at TRIUMF, Vancouver BC; Canada.
au Also at Universita di Napoli Parthenope, Napoli; Italy.
* Deceased