The status of Missing Mass Calculator for Higgs boson mass estimation in the ATLAS $H \rightarrow \tau \tau$ analysis

Krystsina Petukhova, Charles University, Czech Republic
on behalf of the ATLAS collaboration

Higgs Couplings, 1th of October 2019
University of Oxford, Oxford, the United Kingdom
Among the Standard Model (SM) Higgs boson decays to fermions, $H \rightarrow \tau \tau$ is the second most frequent one (BR 6.32%). See the talk by Pier-Olivier DeViveiros.

Large Yukawa coupling to τ-leptons enables direct measurement and examination of the Higgs boson properties (decay width, spin, parity, etc.).

The ATLAS $H \rightarrow \tau \tau$ analysis focuses on measurements of the fiducial and differential cross sections on four Higgs boson production processes: ggF, VBF, VH, and $t\bar{t}H$.

$H \rightarrow \tau \tau$ cross section was measured with the data collected in 2015 and 2016 [2].
The Higgs boson mass in $H \rightarrow \tau\tau$ SM analysis

- Background processes mimic $H \rightarrow \tau\tau$,
 - Drell-Yan $Z \rightarrow \tau\tau$ (50-90% of the total background)
 - QCD jets misidentified as $\tau_{\text{had}}, \mu, \epsilon$
- Accurate ditau mass $m_{\tau\tau}$ reconstruction is necessary for reasonable separation between the signal $H \rightarrow \tau\tau$ process and the largest irreducible background $Z \rightarrow \tau\tau$ events: mass distributions of Z and H bosons partially overlap.
 - The use of the mass $m_{\tau\tau}$ as a discriminant in the final fit for $H\tau\tau$ coupling analysis.
 - The CP determination (see Alena Loesle’s talk) also uses $m_{\tau\tau}$ as input to the multi-variate analysis discriminant
- A mass estimator also needs to be fast and versatile.

Figure: Distribution of the reconstructed ditau invariant mass ($m_{\tau\tau}$) for the sum of all signal regions. [2].
The \(m_H \) estimation in the \(H \rightarrow \tau\tau \) process

Figure: The \(H \rightarrow \tau_{\text{lep}}\tau_{\text{had}} \) decay cascade.

- \(\tau \)-leptons instantly decay with the non-detectable neutrinos in the final state:
 - Had-had \(H \rightarrow \tau_{\text{had}}\tau_{\text{had}} \) (\(H \rightarrow \tau\tau \rightarrow hh + 2\nu \)) channel – BR 42.0%
 - Lep-had \(H \rightarrow \tau_{\text{lep}}\tau_{\text{had}} \) (\(H \rightarrow \tau\tau \rightarrow lh + 3\nu \)) channel – BR 45.6%
 - Lep-lep \(H \rightarrow \tau_{\text{lep}}\tau_{\text{lep}} \) (\(H \rightarrow \tau\tau \rightarrow ll + 4\nu \)) channel – BR 12.4%

- The ditau invariant mass, \(m_{\tau\tau}^{\text{MMC}} \), is estimated based on the 4-vectors of the visible \(\tau \)-decay products, missing transverse energy \(E_{T}^{\text{miss}} \) (or \(E_T' \)) as the neutrino system momentum proxy, and the event info.

- In the ATLAS \(H \rightarrow \tau\tau \) analysis, \(m_{\tau\tau} \) is calculated by the Missing Mass Calculator (MMC) method, an advanced likelihood-based technique.
 - Applied in the \(ggF/VBF \) analysis.

Figure: The ditau decay channels and their probability.
The Missing Mass Calculator (MMC) technique

- Originally developed by the CDF collaboration at Tevatron → adopted by the ATLAS experiment.
- Accounts for the kinematic constraints while considering the variation of energy and position of the particles in the decay cascades over the allowed phase space.
 - Assumes neutrinos are the only E_{miss} source.
 - For each event, scan over possible configurations of the visible and invisible τ-decay products is performed in a Markov chain.
 - For each kinematic configuration, the final weight is defined as a log-likelihood of its total probability.
- The solution with the highest likelihood and largest weight is set as a final estimator of m_{H}.

\[
\mathcal{L} = - \log(P_{\text{total}}) = - \log(P(\Delta R_{\text{vis,miss}}_{1,p_{\tau}}, \delta_{\phi_{1}}) \times P(\Delta R_{\text{vis,miss}}_{2,p_{\tau}}, \delta_{\phi_{2}}) \times P(E_{T,x,y}) \times P(E_{\text{vis. }\tau_{1}}) \times P(E_{\text{vis. }\tau_{2}}) \times P(m_{\text{miss}1}) \times P(m_{\text{miss}2})
\]

Figure: Example of the probability distribution functions $P(\Delta R, p_{\tau})$ [3] at a particular p_{τ}.
The assumption that the E_T^{miss} is only due to neutrino presence requires appropriate treatment of the E_T^{miss} resolution due to e.g., E_T^{miss} resolution smearing, restrictions in the track-based soft term reconstruction [4].

$$P(E_T^{x,y}) = P(E_{\text{sugg}}^{T x,y}, E_{\text{meas}}^{T x,y}, \sigma_{E_T^{\text{miss}}}) = \exp(-\frac{(\Delta E_T^{x,y})^2}{2\sigma_{E_T^{\text{miss}}}^2}) \ [3]$$

E_T^{miss} resolution estimated as the RMS width of $E_{T x,y}^{\text{reco}} - E_{T x,y}^{\text{truth}}$.

The standard MMC approach relies on the E_T^{miss} resolution parametrization depending on underlying event activity ($\sum E_T$) [6], pile-up (N_{PV} or $\langle \mu \rangle$), and, for lep-lep channel, kinematics of the visible τ-lepton decay products.

The method assumes the E_T^{miss} to be isotropic. It needs to be re-parameterized to accommodate the properties of each new dataset.
E_T^miss resolution estimation in the MMC method (1)

Alternative E_T^miss resolution estimations for input to the MMC were evaluated:

- A new method from the ATLAS E_T^miss group [7] provides an object-based E_T^miss significance calculation that uses the resolution of all input objects.

- The significance can be used for per-event $\sigma_{E_T^\text{miss}}$ estimation:

$E_T^\text{miss} / S_{E_T^\text{miss}}$, where $S_{E_T^\text{miss}}$ is the object-based E_T^miss significance.

- σ_\parallel, σ_\perp, ρ'', where σ_\parallel and σ_\perp are the parallel and perpendicular components of E_T^miss resolution, respectively, and ρ is their correlation.

General anisotropy of the actual E_T^miss is in the E_T^miss PDF:

$$
P(E_{\text{sugg}}^\parallel, E_{\text{sugg}}^\perp, E_{\text{meas}}^\parallel, E_{\text{meas}}^\perp, \sigma_\parallel, \sigma_\perp, \rho) = \frac{1}{2\pi\sigma_\parallel\sigma_\perp\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\frac{E_{\text{sugg}}^\parallel - E_{\text{meas}}^\parallel}{\sigma_\parallel}\right]^2 + \left(\frac{E_{\text{sugg}}^\perp - E_{\text{meas}}^\perp}{\sigma_\perp}\right)^2 - 2\rho\left(\frac{E_{\text{sugg}}^\parallel - E_{\text{meas}}^\parallel}{\sigma_\parallel}\right)\left(\frac{E_{\text{sugg}}^\perp - E_{\text{meas}}^\perp}{\sigma_\perp}\right)\right\}
$$

Figure: The E_T^miss resolution [5].

Figure: Background rejection vs. signal efficiency [7].

Figure: $m_{\tau\tau}^{\text{MMC}}$ in $H \rightarrow \tau_{\text{lep}}\tau_{\text{lep}}$ events [8].
E_{miss}^T resolution estimation in the MMC method (2)

- The tool separation power remains at the same level: $\sim 80\%$ of $Z \rightarrow \tau \tau$ rejection at the ggH signal acceptance of $\sim 80\%$.
- E_{miss}^T resolution estimation via $S_{E_{\text{miss}}^T}$ is preferable as:
 - Dataset- and process-independent approach accounting for all the E_{T} components resolution.
 - Such approach is compliant with the up-to-date ATLAS E_{T} definition and gives an advantage for physics analysis, e.g. jet background is accounted in $\sigma_{E_{\text{T}}}^\text{miss}$ as proportionally growing with pile-up jets number [7].

![Figure](image_url)

Figure: ROC curve for selecting $H \rightarrow \tau_{\text{lep}} \tau_{\text{lep}}$ events and rejecting $Z \rightarrow \tau_{\text{lep}} \tau_{\text{lep}}$ events [8].
The number of steps for the phase space scan in the Markov chain was tuned for Run 1 conditions (200 k).

Studies were carried to verify whether a smaller number of iterations was sufficient for Run 2 conditions.

Figure: $m_{\tau\tau}^{\text{MMC}}$ in $Z \rightarrow \tau\tau$ and $H \rightarrow \tau\tau$ events [8].

Figure: The CPU time of the $m_{\tau\tau}^{\text{MMC}}$ calculation [8].

Gain in computational time.
Phase space scanning in the MMC method (2)

- The N_{iter} in the phase space scan with reducing optimized by a factor of ~ 4.
- m_{H}^{MMC} resolution is $\sim 16-17$ GeV – stable for all N_{iter} above 50k.
- The AUC values are in a good agreement for 50k, 100k, 200k iterations. The power of separation between signal and background is kept.

Figure: The $m_{\tau\tau}^{\text{MMC}}$ resolution in as a function of N_{iter} [8].

Figure: The AUC of the ROC curve as a function of N_{iter} [8].

Figure: The relative AUC of the ROC curve as a function of N_{iter} [8].
Conclusions

- Different methods were investigated for estimating the E_T^{miss} resolution in the ATLAS Missing Mass Calculator.
 - The alternative approach for E_T^{miss} resolution estimation was introduced and tested: E_T^{miss} resolution as $E_T^{\text{miss}} / S_{E_T^{\text{miss}}}$, where $S_{E_T^{\text{miss}}}$ is the object-based E_T^{miss} significance.
- Up-to-date ATLAS estimation of E_T^{miss}.
- No requirement for retuning with a new dataset.
- The CPU time was reduced by a factor of ~ 4 due to optimization of the phase space scanning procedure.
- The performance of the updated MMC method was verified.
 - The $m_{\tau\tau}^{\text{MMC}}$ shape and width are adequate.
 - The m_H^{MMC} resolution is at the level of ~ 16 and ~ 17 GeV (in the had-had and lep-lep channels, respectively).
 - The technique provides $\sim 80\%$ of $Z \rightarrow \tau\tau$ rejection at the ggH signal acceptance of $\sim 80\%$ working point.
- The updated MMC version will be used for the $H \rightarrow \tau\tau$ analysis with the full ATLAS Run 2 dataset.
1. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG#Higgs_cross_sections_and_decay_b

2. Cross-section measurements of the Higgs boson decaying into a pair of τ-leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. 0.1103/PhysRevD.99.072001

4. Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at $\sqrt{s}=13$ TeV. 10.1140/epjc/s10052-018-6288-9

6. Search for anomalous production of events with two photons and additional energetic objects at CDF. 10.1103/PhysRevD.82.052005

8. MMC performance studies Run 2. ATLAS-TAU-2019-001
Bonus slides
$m_{\tau\tau}^{\text{MMC}}$, phase space scan

Figure: The Markov chain scan principle.

Figure: $m_{\tau\tau}^{\text{MMC}}$ in $H \rightarrow \tau_{\text{had}} \tau_{\text{had}}$ events.