Global baryon number conservation encoded in net-proton fluctuations measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

ALICE Collaboration

Abstract

Experimental results are presented on event-by-event net-proton fluctuation measurements in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, recorded by the ALICE detector at the CERN LHC. These measurements have as their ultimate goal an experimental test of Lattice QCD (LQCD) predictions on second and higher order cumulants of net-baryon distributions to search for critical behavior near the QCD phase boundary. Before confronting them with LQCD predictions, account has to be taken of correlations stemming from baryon number conservation as well as fluctuations of participating nucleons. Both effects influence the experimental measurements and are usually not considered in theoretical calculations. For the first time, it is shown that event-by-event baryon number conservation leads to subtle long-range correlations arising from very early interactions in the collisions.

© 2019 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

*See Appendix A for the list of collaboration members
Phase transitions in strongly interacting matter can be addressed by investigating the response of the system to external perturbations via measurements of fluctuations of conserved charges such as baryon number or electric charge \[1,2\]. At LHC energies there would be, for vanishing light quark masses (u and d quarks), a temperature-driven second order phase transition between a hadron gas and a quark–gluon plasma \[3\]. For realistic quark masses this transition becomes a smooth cross over \[4,5\]. However, because of the small masses of the current quarks, one can still probe critical phenomena at LHC energies (vanishing baryon chemical potential) as reported in \[6\]. Indeed, recent LQCD calculations \[4,5\] exhibit a rather strong signal for the existence of a pseudo-critical chiral temperature of about 156 MeV. Moreover, this pseudo-critical temperature is in agreement with the chemical freeze-out temperature as extracted by the analysis of hadron multiplicities \[7,8\] measured by the ALICE experiment. This implies that the strongly interacting matter created in central collisions of Pb nuclei at LHC energies freezes out very near the chiral phase transition line. Hence, the singularities arising from the second order phase transition can be captured by measuring fluctuations of conserved charges such as the net-baryon number. Evaluated within the framework of the Hadron Resonance Gas (HRG), net-baryon distributions coincide with the Skellam distribution, which is the probability distribution of the difference of two random variables, each generated from statistically independent Poisson distributions \[9,10\]. In fact, at the pseudo-critical temperature of 156 MeV, similar to the HRG framework, LQCD also predicts a Skellam behavior for the second cumulants of net-baryons, while the fourth cumulants of net-baryons from LQCD are significantly below the corresponding Skellam baseline \[11,12\].

Conserved quantities of course fluctuate only in sub-regions of the available total phase space of the reaction. In statistical mechanics they are, hence, analyzed within the Grand Canonical Ensemble (GCE) \[13\] formulation, where only the average number of net-baryons are conserved. In order to compare theoretical calculations within the GCE, such as the HRG \[7\] and LQCD \[4,5\], with experimental results, the data are analyzed in different acceptance windows by imposing selection criteria on rapidity and/or transverse momentum of the detected particles. Indeed, if the selected acceptance window is too small, possible dynamical correlations will be washed out and the measured fluctuations will approach the Poisson limit \[14\], implying that net-baryons will be distributed according to the Skellam distribution.

Recently the effects of limited acceptance were studied \[15\]. There, it was investigated under which conditions net-baryon fluctuations depend on the size of the acceptance. An obvious case is fluctuations caused by correlations due to baryon number conservation. To identify these and other long-range correlations it is interesting to perform the experimental analysis as a function of the acceptance size.

The analysis is set up by providing the necessary definitions. The first and second cumulants of the net-baryon probability distribution \(P(\Delta n_B)\), with \(\Delta n_B = n_B - n_{\overline{B}}\), are defined as

\[
\kappa_1(\Delta n_B) = \sum_{\Delta n_B = -\infty}^{\infty} \Delta n_B P(\Delta n_B) = \langle \Delta n_B \rangle, \tag{1}
\]

\[
\kappa_2(\Delta n_B) = \sum_{\Delta n_B = -\infty}^{\infty} (\Delta n_B - \langle \Delta n_B \rangle)^2 P(\Delta n_B) = \langle (\Delta n_B - \langle \Delta n_B \rangle)^2 \rangle, \tag{2}
\]

The second cumulant can be represented as a sum of the corresponding cumulants for single baryons and antibaryons plus the correlation term for the joint probability distributions of baryons and antibaryons \(P(n_B, n_{\overline{B}})\)

\[
\kappa_2(\Delta n_B) = \kappa_2(n_B) + \kappa_2(n_{\overline{B}}) - 2 \langle n_B n_{\overline{B}} \rangle - \langle n_B \rangle \langle n_{\overline{B}} \rangle. \tag{3}
\]
where the mixed moment $\langle n_B n_\pi \rangle$ is defined as

$$
\langle n_B n_\pi \rangle = \sum_{n_B=0}^{\infty} \sum_{n_\pi=0}^{\infty} n_B n_\pi P(n_B, n_\pi).
$$

(4)

Equation 3 shows that, for vanishing correlations between baryons and antibaryons ($\langle n_B n_\pi \rangle = \langle n_B \rangle \langle n_\pi \rangle$), the second cumulant of net-baryons is exactly equal to the sum of the corresponding second cumulants for baryons and antibaryons.

The data presented below were obtained by analyzing about 13×10^6 minimum-bias (cf. [16] for definition) Pb–Pb events at a center-of-mass energy per nucleon–nucleon pair of $\sqrt{s_{NN}} = 2.76$ TeV recorded by the ALICE detector [17] in the year 2010. Two forward scintillator arrays (V0) are located on either side of the interaction point and cover the pseudorapidity intervals $2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$ [18]. A minimum-bias trigger condition is defined by requiring a combination of hits in the two innermost layers of the ITS and coincidence in both V0 detectors. The event centrality is selected based on the signal amplitudes in the V0 detectors [18].

The detectors used for track reconstruction are the Time Projection Chamber (TPC) [19] and the Inner Tracking System (ITS) [20]. In order to keep the tracking efficiency as high as possible, only the TPC detector was used for particle identification, while precise vertex determination was performed with the ITS detector. The track selection criteria used are described in Section 3.1 of [21]. Charged particle tracks with at least 80 out of maximum of 159 specific energy loss (dE/dx) samples in the TPC were used in this analysis to ensure best particle identification. Moreover, in order to suppress contributions of secondary particles from weak decays, the distance-of-closest-approach (DCA) of the extrapolated track to the primary collision vertex was taken to be less than 2 cm along the beam direction. In the transverse plane, a more restrictive and transverse momentum (p_T) dependent DCA cut of less than $(0.018 \text{ cm} + 0.035 p_T^{-0.01})$ with p_T in GeV/c, was imposed [22].

Since the energy loss of charged particles in the gas volume of the TPC depends explicitly on the particle momentum (p), the analysis was performed in momentum space. Correspondingly, the particle identification (PID) procedure consists of correlating particle momentum with the specific energy loss dE/dx. This allows the event-by-event fluctuation analysis to be performed with high overall reconstruction efficiency of about 80% for protons, almost independent of the collision centrality. The latter is important because small efficiencies induce Poisson fluctuations. To ensure the best possible dE/dx resolution, the phase space coverage was restricted to $0.6 < p < 1.5$ GeV/c and $|\eta| < 0.8$ for the present analysis. The corresponding p_T range at $|\eta| = 0.8$ is about $0.45 < p_T < 1.12$ GeV/c, which gradually approaches the used momentum range towards midrapidity. Moreover, a differential analysis is provided as function of $\Delta \eta$ in the range 0.2 to 1.6.

The cumulants of net-protons were then reconstructed using the Identity Method (IM) [21,23,27]. This method is designed to deal efficiently with the overlapping dE/dx distributions of protons, kaons, pions and electrons considered in the present analysis. Their specific probability distributions were obtained by unfolding the moments of the measured multiplicity distributions for each particle species. The IM counts proxies of particle multiplicities W_j event-by-event

$$
W_j = \sum_{i=1}^{n} \rho_j(x_i), \quad \rho_j(x_i) = \sum_{j} \rho_j(x_i),
$$

(5)

where j stands for a particle type, x_i denotes the measured values of dE/dx for a given track i and $\rho_j(x)$ is the inclusive dE/dx distribution of particle type j within a specified phase space bin. The summation in Eq. 5 runs over all selected n tracks in the given event. The pure and mixed moments of the W_j distributions were calculated by averaging over all events, leading to the moments of the true multiplicity distributions.
The IM is based on input of moments of W_j distributions and inclusive dE/dx fits in bins of momentum and pseudorapidity. The dE/dx distributions were fit with generalized Gaussian functions, taking into account non-Gaussian components of the experimental dE/dx distributions. The fits of inclusive distributions of dE/dx were performed separately for positively and negatively charged particles in 20 MeV/c momentum and 0.1 units of η bins.

In the upper panel of Fig. 1 the centrality dependence of the efficiency-corrected second cumulants of net-protons is compared with the sum of the mean multiplicities (first cumulants) of protons and antiprotons. Also included are the first and second cumulants of protons and antiprotons. The efficiency correction for the second moments was performed by transporting the particle tracks, simulated with the HIJING [28] and AMPT [29] event generators, through the ALICE apparatus. The procedure was cross-checked by assuming binomial response functions as outlined in [30, 31]. The accuracy of the correction procedure was estimated to be on the percent level and is included in the systematic uncertainties. We note that possible corrections for volume fluctuations such as discussed in [32, 33] were not applied to the data since, at LHC energies, second cumulants of net protons, our main observable, are protected from such effects [34].

![Figure 1](image)

Figure 1: Measured second cumulants of net-proton distributions (red solid boxes) compared with the sum of the mean multiplicities (open squares). The second cumulants of single proton and antiproton distributions are presented with the filled and open circles, respectively. The first cumulants of protons and antiprotons are hardly distinguishable because of the nearly equal mean numbers of protons and antiprotons at LHC energies. In the middle and bottom panels the normalized cumulants R_1 and R_2 are presented. The band visible in the bottom panel is the prediction for R_2 in the presence of volume fluctuations [34].

The subsample approach was chosen to estimate the statistical uncertainties of the reconstructed cumulants [21, 35]. In order to evaluate systematic uncertainties stemming from track selection criteria, the applied selection ranges were varied around their nominal values. Other sources of systematic uncer-
Global baryon number conservation encoded in net-proton fluctuations

The uncertainties originate from the parameters of the $\rho_j(x)$ functions, entering Eq. [5]. The latter was estimated by hypothesis testing using the Kolmogorov-Smirnov (K-S) statistics. For this purpose the parameters of the $\rho_j(x)$ functions were varied by testing the null hypothesis that measured dE/dx distributions and fit functions are similar within a given significance level of 10% (cf. [21, 25] for details). The final systematic uncertainties on cumulants were computed by adding in quadrature the maximum systematic variations from individual contributions.

By their definition, cumulants are extensive quantities, i.e., are proportional to the system volume. This also explains the centrality dependence of all cumulants, presented in the upper panel of Fig. [1]. To remove the system size dependence, normalized cumulants R_1 and R_2 are introduced as

$$R_1 = \kappa_2(n_p - n_{\bar{p}})/\langle n_p + n_{\bar{p}} \rangle,$$
$$R_2 = \kappa_2(n_p)/\langle n_p \rangle.$$ (6)

In the middle and bottom panels of Fig. [1] deviations from unity are visible for both R_1 and R_2. Moreover, the amount of deviation for R_2 is about twice as large compared to that of R_1.

In order to shed light on these observations, the results are compared with predictions from a model constructed recently [34], in which participant fluctuations are included following the analysis of the ALICE centrality selection [18]. Within uncertainties, the model predictions are fully consistent with the measured R_2 values, lending support to the interpretation that volume fluctuations are at the origin of the observed deviation. This is also supported by the observation of a small structure observed in the 10–20% centrality class, where, compared to the first two centrality classes, the centrality bin width is doubled.

On the other hand, by construction, for vanishing net-proton numbers, R_1 should not contain any contributions from volume fluctuations, i.e., the values of R_1 obtained from the model should be consistent with unity [34]. The origin for the deviation of the measured R_1 values from unity must therefore be beyond the volume fluctuations scenario. To further understand these differences, the acceptance dependence is studied.

The analysis is performed in eight different pseudorapidity intervals from $|\eta| < 0.1$ up to $|\eta| < 0.8$ in steps of 0.1. The obtained normalized second cumulants R_1 of net-protons are presented in Fig. [2]. Again the data are below unity, with the deviation linearly increasing with increasing acceptance.

Such a behavior was predicted based on the assumption of global baryon number conservation, which induces correlations between protons and antiprotons leading to the following dependence on the acceptance factor α [34, 37]

$$R_1 = 1 - \alpha,$$ (7)

where $\alpha = \langle n_p \rangle / \langle N_B^{4\pi} \rangle$ with $\langle n_p \rangle$ and $\langle N_B^{4\pi} \rangle$ referring to the mean number of protons inside the acceptance and the mean number of baryons in full phase space. It should be further noted that, for non-central collisions, baryon transport to midrapidity has to be taken into account, which is rather model dependent. In order to avoid the model dependence, the comparison is performed only for the central events and in the estimate of the alpha parameter only produced baryons are used. In doing so, the number of baryons are used in the pseudorapidity range of $|\eta| < 0.5$ as reported in [16, 38–40]. Next, using HIJING and AMPT simulations, estimates were obtained for the total average number of baryons in full phase space. The average number of protons $\langle n_p \rangle$ entering into the definition of α (cf. Eq. [7]) was taken from the current analysis for each pseudorapidity interval. Finally, using these values of α, the pink band in Fig. [2] is calculated with Eq. [7]. The finite width of the band reflects the difference between predictions of the two event generators.
Figure 2: Pseudorapidity dependence of the normalized second cumulants of net-protons R_1. Global baryon number conservation is depicted as the pink band. The dashed lines represent the predictions from the model with local baryon number conservation [36]. The blue solid line, represents the prediction using the HIJING generator.

Inspection of Fig. 2 shows that, for small pseudorapidity ranges of $|\eta| < 0.4$ corresponding to $\Delta \eta < 0.8$, the experimentally measured net-proton distributions closely follow a Skellam distribution. This agreement is expected because of the small acceptance window as discussed above. For $\Delta \eta > 0.8$, deviations from the Skellam distribution are observed. The amount of deviation is small but significant and in good agreement with the prediction assuming global baryon number conservation. The observed deviation is therefore consistent with the assumption of global baryon number conservation, i.e. conservation within the full phase space.

On the other hand, local baryon number conservation may induce additional correlations between protons and antiprotons, which would lead to a further reduction of the measured $\kappa_2(n_p - n_p)$ [36]. In Fig. 2 the data are compared to the predictions from an analysis of effects of local baryon number conservation for different values of correlation width Δy_{corr} between protons and antiprotons. Within the experimental uncertainties the data are best described with the assumption of global baryon number conservation, which corresponds to the correlation width $\Delta y_{\text{corr}} > 2|y_{\text{beam}}|$ but the data are also consistent with a large correlation width of $\Delta y_{\text{corr}} = 5$ [36]. The results from the HIJING event generator (cf. blue solid line in Fig. 2), which can be described with $\Delta y_{\text{corr}} = 2$, and from a recent study reported in [41] would imply much stronger correlations between protons and antiprotons, not consistent with the experimental data. We note here that correlations arising from baryon or charge conservation have also been analyzed in the framework of balance functions [42, 43]. Such an analysis could also shed interesting light on global vs. local baryon conservation.

From the present results it is concluded that effects due to local baryon number conservation are not large, if present at all in second cumulants of net-protons. The large correlation length observed in the data implies that the normalized second cumulant R_1 is determined by collisions in the very early phase of the Pb–Pb interaction [44]. This interesting result would be important to follow up with measurements over a larger rapidity range, such as proposed in [45]. We note that long range rapidity correlations were investigated in other contexts in [46, 47].
After accounting for baryon number conservation, the data are in agreement with the corresponding second cumulants of the Skellam distribution. As mentioned in the introduction, LQCD predicts a Skellam behavior for the second cumulants of net-baryon distributions at a pseudo-critical temperature of about 156 MeV [11], which is very close to the freeze-out temperature from the HRG model applied to the ALICE data [7]. Critical behavior is predicted by LQCD for higher cumulants of net-baryon distributions [48], which will be the topic of future investigations.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC) , Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and
Global baryon number conservation encoded in net-proton fluctuations

References

Global baryon number conservation encoded in net-proton fluctuations

ALICE Collaboration

ALICE Collaboration, G. Dellacasa et al., “ALICE technical design report of the inner tracking system (ITS)”, [CERN-LHCC-99-12 (1999)].

Global baryon number conservation encoded in net-proton fluctuations

ALICE Collaboration

A The ALICE Collaboration

Global baryon number conservation encoded in net-proton fluctuations

ALICE Collaboration

61 Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France
62 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
63 Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands
64 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
65 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
66 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
67 Institute of Space Science (ISS), Bucharest, Romania
68 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
69 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
70 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
71 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
72 iThemba LABS, National Research Foundation, Somerset West, South Africa
73 Jeonbuk National University, Jeonju, Republic of Korea
74 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
75 Joint Institute for Nuclear Research (JINR), Dubna, Russia
76 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
77 KTO Karatay University, Konya, Turkey
78 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
79 Lawrence Berkeley National Laboratory, Berkeley, California, United States
80 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
81 Nagasaki Institute of Applied Science, Nagasaki, Japan
82 Nara Women’s University (NWU), Nara, Japan
83 National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
84 National Centre for Nuclear Research, Warsaw, Poland
85 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
86 National Nuclear Research Center, Baku, Azerbaijan
87 National Research Centre Kurchatov Institute, Moscow, Russia
88 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
89 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
90 NRC Kurchatov Institute IHEP, Protvino, Russia
91 NRC «Kurchatov Institute» - IITEP, Moscow, Russia
92 NRNU Moscow Engineering Physics Institute, Moscow, Russia
93 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
94 Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic
95 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
96 Ohio State University, Columbus, Ohio, United States
97 Petersburg Nuclear Physics Institute, Gatchina, Russia
98 Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
99 Physics Department, Punjabi University, Chandigarh, India
100 Physics Department, University of Jammu, Jammu, India
101 Physics Department, University of Rajasthan, Jaipur, India
102 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
103 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
104 Physik Department, Technische Universität München, Munich, Germany
105 Politecnico di Bari, Bari, Italy
106 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
107 Rudjer Bošković Institute, Zagreb, Croatia
108 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
109 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
110 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
111 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru

16