Abstract

We discuss a forward electromagnetic and hadronic calorimeter (FoCal) as a possible upgrade to the ALICE experiment, which could be installed during LS3 for data-taking in 2026–2028 at the LHC. The FoCal is a highly granular Si+W electromagnetic calorimeter combined with a conventional sampling hadronic calorimeter covering pseudorapidities of \(3.2 < \eta < 5.8 \). The FoCal provides unique capabilities to measure small-\(x \) gluon distributions via prompt photon production and will significantly enhance the scope of ALICE for inclusive and correlation measurements with mesons, photons, and jets to explore the dynamics of hadronic matter at small \(x \) down to \(\sim 10^{-6} \).

* See Appendix A for the list of collaboration members
Executive summary

We discuss the possibility to install a high-granularity forward calorimeter (FoCal) as an upgrade to the ALICE detector at the CERN LHC for Run 4 (2026–2028). The FoCal extends the scope of ALICE, which was designed for the comprehensive study of hot and dense partonic matter, by adding new capabilities to explore the small-\(x\) parton structure of nucleons and nuclei. In particular, the FoCal provides unique capabilities at the LHC to investigate Parton Distribution Functions (PDFs) in the as-yet unexplored regime of Bjorken-\(x\) down to \(x \sim 10^{-6}\) and low momentum transfer \(Q \sim 4\) GeV/\(c\), where it is expected that the hadronic structure evolves non-linearly due to the high gluon densities. The primary objective of the FoCal is high-precision inclusive measurement of direct photons and jets, as well as coincident gamma-jet and jet-jet measurements, in pp and p–Pb collisions. These measurements by FoCal constitute an essential part of a comprehensive small-\(x\) program at the LHC down to \(x \sim 10^{-6}\) and over a large range of \(Q^2\) with a broad array of complementary probes, comprising —in addition to the photon measurements with FoCal— Drell-Yan and open charm measurements planned by LHCb, as well as photoproduction studies by all experiments. This program will provide by far the most extensive exploration of non-linear effects at small-\(x\) for the foreseeable future (Fig. 13). Such effects are a necessary consequence of the non-Abelian nature of QCD, and their observation and characterization would be a landmark in our understanding of the strong interaction. The FoCal also enhances significantly ALICE capabilities to study the origin of long range flow-like correlations in pp and p–Pb collisions, and to quantify jet quenching effects at forward rapidity in Pb–Pb collisions.

An essential ability of FoCal is the reconstruction of \(\pi^0\) decays at forward rapidity up to large transverse momenta \(p_T \sim 20\) GeV/\(c\). By taking advantage of the longitudinal momentum boost of a forward rapidity measurement, the FoCal provides excellent identification capabilities for decay photons, with the capability to reconstruct photon pairs with a spatial separation of a few mm at the surface of the detector. This allows precise discrimination between direct photons and decay photons, enabling direct photon measurements from low transverse momentum up to \(\sim 20\) GeV/\(c\) at large rapidity.

The FoCal layout consists of a high-granularity electromagnetic calorimeter backed by a hadron calorimeter, located outside the ALICE solenoid magnet at a distance of 7 m from the ALICE interaction point. The electromagnetic part of FoCal is a compact silicon-tungsten (Si+W) sampling electromagnetic calorimeter with longitudinal segmentation. The sampling in the current FoCal design consists of 18 layers of tungsten and silicon pads with low granularity (\(\sim 1\) cm\(^2\)) and two (or three) layers of tungsten and silicon pixels with high granularity (\(\sim 30 \times 30\) \(\mu\)m\(^2\)). The pad layers provide the measurement of the shower energy and profile, while the pixel layers enable two-photon separation with high spatial precision to discriminate between isolated photons and merged showers of decay photon pairs from neutral pions. The hadronic part of FoCal is a Cu or Pb/scintillating fiber spaghetti calorimeter with high granularity of up to \(2.5 \times 2.5\) cm\(^2\), which provides good hadronic resolution and compensation. For an outer radius of 0.6 m with 18 pad and 2 pixel layers, a total sensor area of about 20 and 2 m\(^2\), respectively, is needed for the electromagnetic calorimeter, instrumented with about 200 K individual pad channels and about 8 K pixel sensors. The estimated costs (material only) anticipated for FoCal are \(\approx 9\) MCHF for
the electromagnetic and ≈ 2 MCHF for the hadronic calorimeter.

Detailed performance studies utilizing full detector simulation and reconstruction have been performed for selected physics observables and projected delivered luminosities. In this document, we demonstrate that the proposed calorimeter is capable of measuring the inclusive direct photon distributions in pp and p–Pb collisions in the forward region for $4 < p_T < 20$ GeV/c with an accuracy of 5% over most of the range (Fig. 37), strongly constraining especially nuclear PDFs below $x \sim 0.001$ (Figs. 39 and 38). In addition, the inclusive π^0 distribution in central Pb–Pb collisions can be measured with a systematic uncertainty below 10% for $p_T > 10$ GeV/c (Fig. 41).

This proposal is supported by an extensive R&D program. Several prototype detectors were constructed and their performance was studied to validate the design choices for the electromagnetic part of FoCal. For the pixel layer, a prototype that was fully instrumented with MIMOSA-23 pixel sensors was constructed and tested with beams. Tests with ALPIDE sensors and a single converter layer have also been carried out. For the silicon pad technology, several prototypes have been constructed, with pad sensors from different vendors and different choices for the readout electronics. The prototype detectors have been tested with electron beams from the CERN PS and SPS, as well as with pp collisions at $\sqrt{s} = 13$ TeV in the ALICE cavern. The results from these tests confirm the feasibility of the design concept. For the final design, more R&D on the integration of the system is necessary, while only modest additional R&D is needed to finalize the pad and pixel sensor readout.
Contents

1 Introduction 6

2 Physics motivation 8
 2.1 Parton distributions in protons and nuclei 8
 2.1.1 Parton densities and QCD evolution 8
 2.1.2 Probing the gluon density with isolated photons 14
 2.1.3 Isolated photon predictions for pp and p–Pb collisions 18
 2.1.4 Overview of kinematic reach at LHC and beyond 19
 2.1.5 Small-\(x\) studies in ultra-peripheral collisions 21
 2.2 Long-range correlations in pp and p–Pb collisions 21
 2.3 Parton energy loss in Pb–Pb collisions 23
 2.4 Summary of the FoCal physics program 26

3 Conceptual design 27
 3.1 General considerations 27
 3.2 The FoCal Design 29
 3.2.1 The FoCal-E Design 29
 3.2.2 The FoCal-H design 31
 3.2.3 The beam pipe 31
 3.2.4 The location of FIT 33

4 Performance simulations 34
 4.1 The detector model 34
 4.2 Cluster finding algorithm 35
 4.3 FoCal-E response for photons 36
 4.4 FoCal-E response for neutral pions 36
 4.5 FoCal-E response for J/\(\psi\) 37
 4.6 FoCal-H performance for charged pions 39
 4.7 Jet reconstruction in pp 39
 4.8 \(\pi^0\) reconstruction in Pb–Pb 39

5 Physics performance in pp, p–Pb, and Pb–Pb collisions 42
 5.1 Direct photon performance with full pp simulations 42
 5.2 Direct photon performance with full p–Pb simulations 45
 5.3 Impact of direct photon performance on gluon PDF 48
 5.4 \(\pi^0\) spectra in Pb–Pb and nuclear modification factor 50

6 Detector design and beam test results 51
 6.1 FoCal-E module design and integration 51
 6.2 FoCal-E Pad layers and prototype tests 52
 6.3 FoCal-E pixel layers and prototype tests 55
 6.4 FoCal-E density, Molière radius and two-photon separation 58
1 Introduction

Instrumentation of the forward region at the LHC enables measurements probing parton densities at small momentum fraction x of the proton or nucleus, down to $x \sim 10^{-6}$ with low momentum transfer $Q \sim 4$ GeV/c. In this regime, parton dynamics are expected to be affected by non-linear QCD evolution, where the rate of gluon–gluon fusion is in competition with that of gluon splitting. The saturation scale, where for a given x the competing processes are in balance, is enhanced in nuclei by a factor $A^{1/3}$ compared to protons, and hence comparisons between measurements in pp and p–Pb collisions are of particular interest. It is evident from the logarithmic dependence of the evolution of parton densities as a function of x and Q^2 in QCD that measurements with as large as possible range in x and Q^2 are needed to establish experimentally the change from linear to non-linear evolution. Therefore, it is essential that the forward detectors at the LHC cover a wide region of (x, Q^2).

The LHCb experiment [1,2], which is a single-arm spectrometer equipped with tracking and particle-identification detectors as well as calorimeters with a forward angular coverage of about $2 < \eta < 5$, will be able to perform important measurements in the small-x region. In particular, the LHCb collaboration expects that measurements of Drell-Yan (DY) cross sections for dimuon masses above 5 GeV/c, probing sea-quark parton distributions, as well as high-precision measurements of open charm and bottom meson production will be possible in Run 3 and 4 [3]. The Muon Forward Tracker, an upgrade of ALICE for Run 3 [4], should allow the measurement of forward DY ($-3.6 < \eta < -2.45$), as low as about 1 GeV/c^2 in pp and p–Pb collisions.

The addition of a forward calorimeter covering pseudorapidities of $3.2 < \eta < 5.8$ in ALICE [5] will enable measurements of isolated photon yields and correlations of isolated photons and hadrons. These observables have direct sensitivity to the gluon density and saturation effects, since isolated photons originate predominantly in quark–gluon Compton scattering. These measurements, complemented by open charm and Drell-Yan measurements with the upgraded LHCb detector [6], as well as photoproduction studies [7], constitute a unique and comprehensive small-x physics program, accessing 2–3 orders of magnitude smaller x at low Q^2 than the forward RHIC [8] and future EIC [9] programs (see Fig. 13). There is no other possibility in the foreseeable future for experimental exploration of significant new physics in this phase space until the operation of one of the electron–hadron colliders at CERN under consideration (LHeC [10] and FCC [11]).

The main goals of the FoCal physics program, as discussed in Sec. 2, are to

- measure the gluon density in protons and lead nuclei and quantify its nuclear modification at small x and Q^2; Global fits to DIS measurements with nuclear targets indicate that the gluon density at low momentum fraction $x \approx 10^{-2}$ is smaller in heavy nuclei than in free protons and neutrons [12,13]. The magnitude of this suppression, called shadowing, is therefore determined only indirectly for gluons, with correspondingly large uncertainties from the global fits, and with only limited constraints of its x-dependence. In contrast, the measurement of direct photons at forward rapidity provides a direct constraint of the gluon density and its x-dependence. The comparison of direct photon and open charm production measurements using global fits tests the universality of these ef-
- **explore the physical origin of shadowing effects:** In nuclear parton distributions, the parton structure of the nucleus is described by momentum distributions at an initial momentum scale, and the scale dependence of the structure can be calculated with linear QCD evolution equations, such as the DGLAP [15,17] and BFKL [18] equations. At small x, hadronic structure is expected to evolve non-linearly due to the high gluon densities, as predicted by the JIMWLK [19] or BK [20] evolution equations. These non-linear effects should affect multi-parton dynamics, resulting in phenomena beyond a reduction of inclusive yields, including for instance observable effects in coincidence measurements. For example, in the picture of the Color Glass Condensate (CGC) [21,22] model, which describes the small-x structure of nuclei in the presence of large gluon fields, the gluon density is so large that a single parton can scatter off many gluons, leading—in addition to an effective reduction of the partonic flux—to a mono-jet or a reduced recoil yield. FoCal will enable measurements of azimuthal π^0–π^0 correlations and isolated γ–π^0 correlations. These measurements, together with those of inclusive yields, will allow to test the x and Q^2 dependence of QCD evolution in multiple complementary ways.

- **investigate the origin of long range flow-like correlations in pp and p–Pb collisions:** Azimuthal correlations that are long range in η, the so-called “ridge”, have been observed in pp and p–Pb collisions [23]. Correlation measurements between particles measured in the central ALICE detector or forward muon system with neutral mesons or photons in the FoCal have a uniquely large range in pseudorapidity separation ($\Delta\eta \sim 5–9$) which will help to explore the extent and evolution of the correlation in rapidity. In particular, the challenging measurement of long-range two-particle correlations between photons and hadrons is extremely interesting since it would provide unique new information on whether the observed ridge effect is caused by final-state or initial-state effects.

- **explore jet quenching at forward rapidity in Pb–Pb collisions:** One of the hallmark observations in heavy ion collisions is the modification of hadron and jet production due to the interaction of energetic partons in the Quark Gluon Plasma (QGP) [24]. FoCal will provide measurements of high-p_T neutral meson and jet production at larger rapidity than in present measurements, allowing us to map the QGP density as a function of rapidity and explore the effect of longitudinal flow on jet quenching effects. Since the fraction of quark-initiated jets is larger than at midrapidity, these measurements also explore the difference between energy loss for quark and gluon jets.

Identification of isolated photons at forward rapidity in pp and p–Pb collisions is the key requirement of the Forward Calorimeter (FoCal). Isolated photons provide a direct access to the partons, since they couple to quarks, and unlike hadrons are not affected by final state effects and fragmentation. Hence, the FoCal is designed as a finely granular Si+W-calorimeter, with good energy resolution and ability to discriminate decay photons from neutral pions from prompt photons, complemented by a conventional sampling hadronic calorimeter for isolation to suppress fragmentation and bremsstrahlung photons.
2 Physics motivation

2.1 Parton distributions in protons and nuclei

2.1.1 Parton densities and QCD evolution

The gauge theory of strong interactions, Quantum Chromodynamics (QCD) \cite{25,26}, successfully describes the dynamics of quarks and gluons, and is an established part of the Standard Model. The perturbative regime of QCD, referring to interactions at high momentum transfer Q and short distances, is well understood, with excellent agreement between theory and experiment. In contrast, the long-range, small momentum-transfer behaviour of QCD is non-perturbative, and many phenomena in that regime are not well understood. One of the key topics of non-perturbative QCD is the structure of nucleons and nuclei. The parton structure of protons and nuclei is normally characterised in terms of parton distribution functions (PDFs) which absorb the non-perturbative physics that cannot at present be calculated from theory. PDFs are determined from experimental measurements, in particular from deep inelastic scattering (DIS) experiments such as H1 and ZEUS at HERA \cite{27}. Due to factorisation, i.e. the fact that quantum interference between long and short range processes is negligible, the PDFs determined from DIS are universal and can be used to calculate cross sections of hard processes at the LHC.

The current practice is to parametrise the distribution of momentum fraction x (usually called Bjorken-x) carried by partons in the nucleons and in nuclei measured at a small momentum scale and use perturbative evolution equations to calculate the distributions at large momentum scales. The PDFs are determined from experimental data using a global fit to measurements that cover a range of x and Q^2.

Example PDFs from HERAPDF2.0 are shown in the left panel of Fig. 1. The kinematic coverage of the available measurements is limited, so the parametrisations are used together with the DGLAP evolution equations \cite{15,17} to interpolate the areas covered by measurements and to extrapolate into unconstrained regions of the (x,Q^2) phase space. The DGLAP evolution equations are valid at moderate to large Q^2 and moderate to large x, where the parton densities are not too large. For intermediate values of Q^2 but small values of x, the BFKL equations \cite{18}, which use k_T factorization, are expected to describe the evolution, as illustrated in the right panel of Fig. 1. One of the key features of the evolution in this regime is that the gluon density \cite{4} increases dramatically for $x \to 0$. This is because the DGLAP and BFKL evolution equations are linear equations including only parton splitting processes, so that parton densities only increase towards smaller x and larger Q^2. However, at small enough x, the presence of abundant soft gluons arising from gluon splitting leads to high-enough parton densities, so that parton recombination, in particular gluon fusion, will be significant. The QCD evolution in this regime will be non-linear, and can be described by the JIMWLK \cite{19} or approximated by the BK \cite{20} equations. The non-linear effects will limit the growth of the PDFs, and the gluon density will reach a dynamic “equilibrium” value, at which one expects gluon saturation. At a given value of x,

\footnote{Due to gluon splitting, also the sea-quark contributions rise strongly. However, since gluons are the dominant degrees of freedom at small x, one usually discusses these small-x phenomena in terms of gluon distributions only.}
saturation is expected to happen below a characteristic saturation scale, given by

$$Q_s^2 \approx \frac{xg_A(x;Q^2)}{\pi R_A^2} \propto A^{1/3} x^{-\lambda},$$

(1)

where $g_A = A g$, g is the gluon PDF of a proton, R_A the radius of the nucleus, A the nuclear mass number and the exponent $\lambda \approx 0.3$ [28,29]. Qualitatively, the saturation scale increases with the gluon density, i.e. at smaller x and for heavier nuclei (by factor 6 in case of Pb). For perturbative calculations to work well in the saturated regime, the saturation scale should be an order of magnitude larger than the QCD scale $\Lambda_{QCD} \approx 0.2$ GeV/c. Various theoretical models have been developed to perform calculations in the regime of gluon saturation. The most prominent model, the CGC model [21,22], uses a classical description of non-linear QCD, since strong fields govern the dynamics of the system at momentum scales close and below the saturation scale Q_s, where the gluon density is maximal and gluon splitting and fusion are balancing each other. The CGC description is expected to be important in the initial stages of heavy ion collisions, where the soft degrees of freedom are dominated by gluons that are liberated from the parton structure. The liberated gluons (in the form of the so-called GLASMA) rapidly evolve into a strongly-interacting Quark-Gluon Plasma (QGP) state [30], which prevailed a few μs after the Big Bang [31].

The main experimental input for the determination of PDFs for protons and nuclei comes from DIS measurements, in which a virtual photon, W or Z boson is exchanged. These measurements probe the quark density in nuclei directly, but the gluon structure is determined indirectly from
Fig. 2: (Left) Kinematical coverage in the (x,Q^2) plane of the DIS neutral-current nuclear structure function data included in nNNPDF1.0. (Right) Comparison of the nuclear modification between the nNNPDF1.0, EPPS16 and nCTEQ15 fits versus x at $Q^2 = 10$ GeV2 for the gluon PDF in Pb. Data above $Q^2 = 3.5$ GeV2 were included for nNNPDF, while for EPPS16 and nCTEQ15 data down to 1.7 GeV2 (including light hadrons), as well as high Q^2 W, Z and dijet data were used. In all cases, the nuclear PDFs have been normalized by the proton nNNPDF3.1, and 90% confidence-level uncertainty bands are drawn. Figures are from [32].

As shown in Fig. 2, the Q^2-evolution of the measured cross sections. Collisions of hadrons can also be used to probe the parton structure; in particular di-lepton production in the Drell-Yan (DY) process and electroweak boson production (γ, Z, W) are of interest since the final state particles are elementary particles, where no fragmentation or hadronisation is involved. The left panel of Fig. 2 shows the (x,Q^2) range covered by neutral-current nuclear structure function data included in nNNPDF1.0 [32], which are limited to about $x > 10^{-2}$. At smaller x, the main measurements that are available are W, Z and dijet production, which however cover large $Q^2 \approx 90$ GeV, and thus do not provide strong constraints at smaller Q. The EPPS16 [33] and nCTEQ15 [34] fits include these results as well as light hadron production data at midrapidity at RHIC.

Parton distribution functions for protons are relatively well constrained by DIS measurements, although the uncertainties on the gluon distribution become larger than 20% at small x and Q^2 (around 10^{-3} and 10 GeV2) [35]. To illustrate the current state of knowledge of the gluon density in nuclei, the right panel of Fig. 2 shows the nuclear modification of the gluon distribution (quantified as the ratio of nuclear over proton PDF) and its uncertainty for different nuclear PDFs [32][34]. The different parameterizations exhibit a large spread for small values of x, reflecting the general lack of constraints due to the limited set of relevant measurements in particular with nuclear targets. Since currently neither DIS, nor photon production, nor DY data are available to constrain the nuclear PDFs at small x (below 10^{-2}), the uncertainties before new data are actually available rely completely on extrapolating the uncertainties from high x and Q via linear evolution equations to small x and low Q, and hence may currently be underestimated.

In fact, most analyses of nuclear PDFs have used parametrisations for the small-x behaviour that impose a specific shape, for example EPPS16 [33] uses a parametrisation for the nuclear modification that is constant at small x. Using such parametrisations reduces the uncertainties at
small x and does not reflect the fact that no experimental information is available. The nNNPDF analysis [32] uses a broad set of parametrisations that explore a larger range of possible x-dependences at small x, resulting in significantly larger uncertainties at small x.

Hadron production measurements do not provide direct access to the parton kinematics in the scattering, but can be used to verify PDFs, by comparing the measured cross sections to predictions with different PDF sets. The momentum fraction x probed via partons emitted with a certain transverse momentum p_T at rapidity y in collisions with a centre-of-mass energy \sqrt{s} can be approximated as

$$x \approx \frac{2p_T}{\sqrt{s}} \exp(-y). \quad (2)$$

Hence, measurements at large rapidity and at low p_T are most sensitive to the smallest values of x for a given beam energy.

![Nuclear modification factor R_{pPb} as a function of p_T for prompt D^0 integrated over $2.5 < |y^*| < 4.0$ for $p_T < 6 \text{ GeV/c}$ and $2.5 < |y^*| < 3.5$ for $6 < p_T < 10 \text{ GeV/c}$ for p–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ as measured by LHCb [36] compared to theoretical predictions of different pQCD calculations using nuclear PDFs and a recent CGC calculation.](image.png)

Fig. 3: Nuclear modification factor R_{pPb} as a function of p_T for prompt D^0 integrated over $2.5 < |y^*| < 4.0$ for $p_T < 6 \text{ GeV/c}$ and $2.5 < |y^*| < 3.5$ for $6 < p_T < 10 \text{ GeV/c}$ for p–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ as measured by LHCb [36] compared to theoretical predictions of different pQCD calculations using nuclear PDFs and a recent CGC calculation.

The most precise current measurement at forward rapidity that probes small x at the LHC is the measurement of prompt D-meson production at forward rapidity $2.5 < y < 4.0$ by LHCb [36]. D-meson production is directly sensitive to the gluon density, since the dominant production process for $c\bar{c}$ production is gluon fusion $gg \rightarrow c\bar{c}$. Figure 3 shows the measured nuclear modification factor R_{pPb} as a function of p_T at forward rapidities, which shows that the forward production of prompt D-mesons is suppressed compared to pp collisions, with $R_{pPb} \sim 0.6$ at low p_T and increasing mildly with p_T. The measured suppression is in line with expectations based on the various nuclear PDF sets, which are also shown in the figure. The suppression of charm production in the calculations with nuclear PDFs is a direct result of the reduced gluon density at $x \lesssim 10^{-2}$ (see Fig. 2) which is commonly referred to as *gluon shadowing*. The calculated values
Fig. 4: STAR preliminary data of two-particle correlations at forward rapidity between pairs of hadrons as a function of the relative azimuthal angle in d–Au collisions at $\sqrt{s_{NN}} = 0.2$ TeV. The theoretical results correspond to two CGC-based calculations and a higher-twist perturbative calculation. Figure taken from [47].

range from R_{pPb} about 0.3 to 0.9, reflecting the current uncertainties in the nuclear modification of the small-x gluon density. This directly confirms that the shadowing at small x is strong. The NMC data [37–39] that initially identified the effect only constrain the nuclear PDFs on the large x side of the shadowing region, near $x = 10^{-2}$. Including the D meson data in the determination of the nuclear PDFs has only a little influence on the central value, but reduces the uncertainties by up to a factor 2 [40]. However, a quantitative determination of the amount of gluon shadowing based on hadron production measurements is complicated by the fact that hadronic final state effects (rescattering) may also play a role in the observations. In particular, the recently observed flow-like long-range correlations [42–46], discussed in Sec. 2.2, need to be taken into account in the interpretation of the measurements.

While the nuclear PDFs can describe the suppression of open charm production in the forward region by parametrising the gluon density, they do not provide a physical mechanism for this suppression. One exciting possibility is that the observed suppression is a sign of the onset of non-linear evolution and the gluon saturation effects described above. A recent CGC calculation [48] which includes these effects is also shown in Fig. 3. It describes the measurement reasonably well, though it exhibits systematically slightly less suppression compared to the data.

\footnote{Note that the updated PDFs introduce a tension with the ALICE midrapidity D^0 meson nuclear modification factor [41].}
Inclusive yield measurements provide detailed information about the gluon density, and are expected to be a powerful test of linear evolution. Multi-particle correlations provide a complementary tool to explore the underlying physical mechanism of gluon saturation. Already at RHIC, a strong suppression of single hadron and hadron-pair production at forward rapidity in d–Au relative to pp collisions has been reported [49,50]. These results were not consistent with expectations of pQCD using linear evolution and are better described by saturation models, including the CGC model. Furthermore, it was found that the suppression is larger for smaller impact parameter selection and for pairs probing more forward rapidities [50]. These observations are consistent with qualitative expectations from the CGC model that quarks and gluons scattering at large rapidity will interact coherently with gluons at small x in the gold nucleus, and result in a suppression of the rate of observed recoiling jets in d–Au compared to pp collisions, as shown in Fig. [4]. However, the mechanism for the suppression is not firmly established, since competing theoretical approaches such as initial- and final-state energy loss also lead to a suppression. The measurements at RHIC were done for hadrons at very low p_T, where the reference description by pQCD are not expected to perform well, and because of fragmentation, the ratio of measured final state momenta of hadrons to parton momenta relevant for the description of the initial state exhibits a broad distribution.

Compared to RHIC, the LHC will give access to a significantly larger region of phase space that is potentially affected by parton saturation. In particular, the region of gluon saturation will extend to p_T values high enough that perturbative QCD should be applicable.

Fig. 5: Predictions for γ–π^0 [51] (left panel) and π^0–π^0 [52] (right panel) correlations as a function of azimuthal angle difference at forward rapidity in minimum-bias pA and pp collisions at the LHC.

Similar to RHIC, it is expected that azimuthal correlations in γ–hadron, γ–jet or hadron–hadron production in p–Pb collisions should exhibit a suppression of the away-side peak at forward rapidities [51][53], as shown in Fig. [5]. In particular, γ–jet correlations are a very promising measurement, since the parton kinematics (x_1, x_2 and Q) is well constrained, and —as discussed
next—the γ is not affected by final state effects.

![Feynman diagrams for direct photon production](image)

Fig. 6: Feynman diagrams for direct photon production. Prompt (isolated) photons from the leading order a) quark-gluon Compton process, and b) quark-antiquark annihilation process. Fragmentation (non-isolated) photons are produced at next-to-leading order from c) bremsstrahlung from a quark, and d) emission during the gluon fragmentation process.

Fig. 7: Relative contributions without (left) and with (right) isolation of the qg-Compton, q̅q annihilation, and fragmentation subprocesses in NLO direct photon production in pp collisions at √s = 14 TeV at the LHC at forward rapidity obtained with JETPHOX. Figures are taken from [54].

2.1.2 Probing the gluon density with isolated photons

Prompt photons provide a direct access to the parton kinematics, since they couple to quarks, and unlike hadrons are not affected by final state effects. At leading order (LO), the photon is produced directly at the parton interaction vertex without fragmentation, as shown in the left panel of Fig. [6]. The dominant photon production process is the quark-gluon Compton process (Fig. [6a]), followed by quark-anti-quark annihilation (Fig. [6b]), contributing mostly at large x. In next-to-leading order (NLO) or even higher order processes, photons may also be produced by bremsstrahlung or fragmentation of one of the outgoing partons, Figs [6c] and [6d], which involves the non-perturbative parton-to-photon fragmentation distributions which are partly known from existing measurements. At LHC energies, a large fraction of direct photons are produced in the
A first estimate of the Bjorken-x sensitivity of prompt photon and D meson production at forward rapidity can be obtained from the PYTHIA event generator [56]. PYTHIA is based on the calculation of LO processes, but simulates initial state radiation as well as the shower evolution and thereby includes leading log terms at all order in pQCD, and models hadronisation employing the Lund model. In addition, it includes an effective modeling of the underlying event in the form of multiple-parton interactions. Figure 8 shows the distributions of the momentum fraction of gluons that contribute to production of D mesons and prompt photons at forward rapidity. Here and in the following, the kinematic region chosen for the D mesons matches that of the published data [36]. It can be clearly seen that prompt photon production probes a smaller range in Bjorken-x and that the distributions are narrower than for open charm production, where the fragmentation process introduces an additional momentum spread. The right panel shows the median and the 90% interval of the gluon-x (x_2) distribution as a function of the transverse momentum.

Fig. 8: (Left) Distribution of the momentum fraction of the gluons (x_2) contributing to production of D mesons and prompt photons in the PYTHIA event generator (v8.235) for $4 < p_T < 5$ GeV/c. The bars above the distribution indicate the median and the interval that contains 90% of the distribution. The right panel shows the median and 90% spread of the gluon-x (x_2) distribution as a function of the transverse momentum.
A more sophisticated exploration of the Bjorken-\(x\) sensitivity of direct photon and D meson production at forward rapidity at the LHC using NLO pQCD calculations with JETPHOX has been reported in [57,58]. The main result is reproduced in Fig. 9 which shows that the gluon-\(x\) (\(x_2\)) distribution for direct photons is peaked at small values as expected. Comparing the contribution from prompt and fragmentation photons reveals that both components have a sensitivity to small \(x\); however, the fragmentation photons show a strong tail towards larger \(x\). The distribution corresponding to neutral pion production shows a similar (or only slightly smaller) sensitivity to the small \(x\)-region as the fragmentation photons. The sensitivity to small \(x\) improves significantly when fragmentation processes are suppressed by isolation cuts. Compared to isolated photons, D mesons probe slightly larger \(x\), with also a broader distribution, due to fragmentation effects. Assuming a constant suppression of gluons in nuclei compared to protons, D-meson and isolated-photon production measurements are equally sensitive to the gluon distribution. However, if there is an onset of the suppression at small \(x\), the isolated photon measurement is significantly more sensitive due to its lower reach in \(x\).

In the following, the difference between the photon and charm sensitivity is demonstrated by means of a simplified model study, using three different scenarios for the nuclear modification of the gluon distribution. The three scenarios are illustrated in the upper panels of Fig. 10: scenario 1 has a constant suppression, independent of \(x\) as assumed in the EPPS parameterizations, while scenario 2 and 3 have a suppression that sets in below \(x = 2 \cdot 10^{-4}\) and \(x = 5 \cdot 10^{-5}\) and drops steeply to compensate the steep rise of the gluon density in protons and produce an approximately constant gluon density in the nucleus. These 'modification ratios' are then used to reweight calculations of photon and D meson production in pp collisions at 8.8 TeV in PYTHIA8. There is no explicit \(Q^2\) dependence in the calculation, but this does enter implicitly via the PYTHIA calculation, where \(x\) and \(Q^2\) are related given the acceptance that is simulated. The lower panels of Fig. 10 show the resulting nuclear modification of D meson production at 3.5 < \(y^*\) < 4.0 and direct photons at 4.0 < \(y^*\) < 4.5, as well as the LHCb measurement for comparison. The study confirms that for a constant suppression scenario, charm and photons
Fig. 10: Different scenarios of nuclear gluon suppression and the corresponding nuclear modification factors expected for open charm and direct photons. The upper panels show the choice of the nuclear modification of the gluon PDFs as a function of x. The lower panels show the corresponding nuclear modification factor as a function of p_T for D mesons in the most forward acceptance of LHCb and of direct photons in FoCal. The existing forward measurements by LHCb [36] are included for comparison.

are equally sensitive, but for the other cases with an onset of the suppression at small x, the photon measurement is significantly more sensitive due to its lower reach in x. Note, however, measuring direct photons below ~ 3 GeV/c will most likely not be possible with acceptable accuracy.

In summary, the isolated photon measurement offers unique features:

- Forward photons provide excellent sensitivity to gluon distributions at small x. They are more sensitive at small x than competing measurements, including the D meson measurement from LHCb. They provide a more direct relation between the final state kinematics and the initial state variables.

- The interpretation of a photon measurement is robust. The underlying theory describing the production is well under control. Unlike hadrons, photons should not suffer modifications from final-state interactions, like a boost from collective expansion or energy loss. In addition, the systematic uncertainties in perturbative calculations of charm production that are explored by varying the choice of factorisation and fragmentation scales are larger than for photon production.
Fig. 11: Nuclear modification factor and uncertainties for isolated photons at $\eta = 4$ for $\sqrt{s_{NN}} = 8.8$ TeV calculated using EPPS16 [33] and nNNPDF1.0 [32] nuclear PDFs, compared to two CGC calculations [59, 60]. Only the PDF uncertainties are shown.

2.1.3 Isolated photon predictions for pp and p–Pb collisions

The key measurement proposed for the FoCal is to measure isolated photon p_T spectra at forward rapidity in pp and p–Pb collisions at 8.8 TeV in Run 4 at the LHC. Nuclear effects are quantified by calculating the nuclear modification factor R_{pPb}, which is the ratio of spectra in p–Pb collisions and pp collisions normalized by the number of binary collisions (about 7.2 at $\sqrt{s_{NN}} = 8.8$ TeV). The predicted R_{pPb} at $\eta = 4$ and its uncertainties are shown in Fig. 11 for the EPPS16 and nNNPDF1.0 nuclear PDFs. The central value differs by only about 10–15% between the both calculations, but the uncertainties, which originate from the uncertainties of the nuclear PDFs, are much larger than that, in particular for nNNPDF1.0, which by choice is the least constrained as discussed above. Two calculations of photon production in the CGC framework are shown for comparison as well. The more recent calculation [60] predicts only a moderate suppression below unity, while the earlier calculation by a different group [59, 62] showed a strong suppression $R_{pPb} \approx 0.4$. The rapidity dependence of R_{pPb} in the forward region complemented with low-p_T measurements done with ALICE at midrapidity [63] will allow to systematically explore the (x, Q) phase space at the LHC, and to search for possible breakdown of collinear factorization and linear DGLAP dynamics.

Measurements in pp collisions at $\sqrt{s} = 14$ TeV will serve two purposes: First, they will be useful to constrain or verify the proton PDFs at very small x, which although significantly more precise than the nuclear PDFs, still have uncertainties of the level of 20–50% as shown in Fig. 12. These measurements can then be used as constraining input for nuclear PDFs in the case of $A = 1$.
Fig. 12: Isolated photon spectra in pp collision at 14 TeV for $\eta = 4.5$ (left panel) and $\eta = 5.25$ (right panel) with the CT14 [35] (red line and band) and with the NNPDF3.1 [61] proton PDF (blue line and band). The bands show the effect of the uncertainties on the PDFs on the calculated cross section, ignoring fragmentation scale uncertainties. The lower panels shows the relative uncertainties on a linear scale.

Furthermore, it is expected that saturation effects may be accessible at the highest LHC collision energies of 14 TeV (with x as small as about $5 \cdot 10^{-7}$) by measuring direct photon and pion spectra, and their ratio, at forward rapidity, in particular at $y = 5$ and beyond [64, 65].

Finally, in pp collisions, it is expected that measurements of decay electrons for Z and W bosons should also be possible, since they produce a distinctive signature in the p_T distributions [66].

2.1.4 Overview of kinematic reach at LHC and beyond

Figure 13 gives an overview of the approximate (x,Q) coverage of various experiments for regions probed by nuclear DIS measurements including the future EIC project, as well as possible future direct photon and Drell-Yan measurements (left panel), and hadronic measurements (right panel) at RHIC and LHC. To calculate x and Q the approximate relation in Eq. 2 is used, which neglects fragmentation effects, relevant in particular for hadrons. For LHC, $\sqrt{s_{NN}} = 8.8$ TeV [1], while for RHIC $\sqrt{s_{NN}} = 0.2$ TeV was used. The left figure shows the coverage for regions probed by nuclear DIS measurements [37-39], including the future EIC project [9], as well as possible future direct photon and Drell-Yan measurements proposed by the RHIC cold nuclear program [8], for which STAR and sPHENIX plan to extend their detectors.

\[x = \frac{Q^2}{2p_T^2} \]
Fig. 13: Approximate (x,Q) coverage of various experiments for regions probed by DIS measurements including the future EIC project, as well as possible future direct photon and Drell-Yan measurements (left panel), and hadronic+UPC measurements (right panel) at RHIC and LHC. The estimated saturation scales for proton and Pb are also indicated. The horizontal dashed and curved indicate the kinematic cuts above which data were included in the nNNPDF fits. The dark gray region illustrates the acceptance of the ALICE muon arm (which is rather forward 2.5 < η < 4).

with forward detectors in 2.5 < η < 4 [68, 69]. The right figure shows the regions covered by hadron measurements at RHIC and LHC. In addition, the regions which are covered by LHCb for measurements of open charm and bottom (blue) as well as where FoCal can measure neutral pions at small x (red) are highlighted. LHCb can in principle also measure light hadron production in that range, but no results have been published to date. Figure 13 demonstrates that the FoCal and LHCb measurements will probe much smaller x than any of the other existing and possible future measurements, with the FoCal reaching to the smallest x ever measurable until the possible advent of the LHeC [10] or FCC [11].

The saturation scale, which is indicated in Fig. 13 is obtained using Eq. 1 with the normalization obtained by setting its value to about 1.7 GeV/c for A = 1 at x = 10^{-4} [70]. At high enough parton density or consequently small enough x, non-linear QCD evolution is expected to play a role, in particular near the saturation scale. A smooth, not abrupt, transition is expected from the linear to the non-linear region as a function of x, and the absolute magnitude of Q_s is theoretically not well established. Hence, both LHCb and FoCal collaborations strive to extend the planned measurements to even lower p_T and hence Q. Since these are challenging measurements, the corresponding regions are indicated as open (non-shaded) trapezoids in the left panel of Fig. 13 For FoCal, the main challenges at very low p_T are the large background of decay photons, as well as the increasing contribution from fragmentation photons. The performance in this low p_T region still needs to be studied in more detail. The LHCb collaboration is planning to base their measurements of photons at lower p_T on photons that convert to an electron-positron pair in the detector material [71, 72]: this provides a clean sample of photons, but suffers from
a rather small efficiency and relative large (10% at present) photon conversion uncertainty. Further improvements to enhance the low-\(p_T\) tracking capabilities are proposed for LHCb in Run 4 [73].

2.1.5 Small-\(x\) studies in ultra-peripheral collisions

Ultra-peripheral collision (UPC) photoproduction reactions, which are also used to study gluon shadowing, are included in the right panel of Fig. [13]. These interactions are of great interest for small-\(x\) studies, since the colour-dipole resulting from photon to quark-antiquark fluctuations couples directly to the gluon density. The recent forward \(J/\psi\) photoproduction result [74] by the ALICE collaboration using the muon arm revealed significant shadowing at small \(x\) down to \(10^{-5}\) and \(Q \approx M_{J/\psi}/2\). Photoproduction of di-jets is being explored by the ATLAS collaboration [75] as a promising probe to access a wide range of \(x\) values above \(10^{-4}\) at \(Q > 7\) GeV/c. All LHC experiments, including LHCb, plan to study \(J/\psi\) and other photoproduction channels; a summary of the potential of future UPC studies at the LHC can be found in Ref. [7].

The FoCal can also be used to study photoproduction of the \(J/\psi\), \(\psi'\) and \(\Upsilon\) in ultra-peripheral collisions, extending these studies to larger rapidity, and hence to higher photon energies than is possible at other LHC experiments, thus being able to search for gluon saturation at lower Bjorken-\(x\) values than is possible elsewhere. For pp running, \(|y| = 5.8\) for the \(J/\psi\) corresponds to \(x \approx 5 \times 10^{-7}\), while for Pb–Pb (where the Lorentz boost is smaller) \(x \approx 1.5 \times 10^{-6}\), well below previous experimental measurements. The signature for coherent photoproduction of these mesons decaying to \(e^+e^-\) should be very distinctive in the FoCal — two electromagnetic showers back-to-back in azimuthal angle, with nothing else present in the event (except for some neutrons in the zero degree calorimeters). As is discussed in Ref. [7], the rates for these processes are large, even at large \(|y|\). The major experimental issue is resolving the two-fold ambiguity as to which nucleus emitted the photon, and which was the target. The directional ambiguity can be addressed by studying events with neutrons in different directions and possibly by also studying photoproduction in peripheral hadronic collisions [76, 77]. In addition to a measurement of structure functions at low Bjorken-\(x\), the FoCal coherent photoproduction data could also be used to study the evolution of the nuclear shape with \(Q^2\), at lower \(x\) values than previously [78]. By studying how the apparent nuclear shape changes with decreasing \(x\) in \(J/\psi\) photoproduction on lead targets, we can search for the onset of gluon saturation using a new approach. It should also be possible to study incoherent vector meson photoproduction in both proton and lead targets. This has been used to study fluctuations in the proton shape [79]; this work could be extended down to lower \(x\) with FoCal.

2.2 Long-range correlations in pp and p–Pb collisions

The situation regarding the sensitivity of hadronic observables to the initial state, in particular the gluon density, has been complicated further by recently observed new features in p–Pb collisions [23]. Among those is in particular the “double ridge”, a two-hadron correlation in the relative azimuthal angle \(\Delta \phi\) extending over a large range in \(\Delta \eta\). Examples are shown in Fig. [14] and Fig. [15]. The structure of the correlation in \(\Delta \phi\) can be well described by a Fourier decomposition with a dominant second order coefficient \(v_2\), also known as elliptic flow [82]. By now,
Fig. 14: (Left) Per-trigger particle associated yield in Δφ and Δη for pairs of charged particles with $2 < p_{T,\text{trig}} < 4 \text{ GeV/c}$ and $1 < p_{T,\text{assoc}} < 2 \text{ GeV/c}$ in p–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ for the 0–20% event class after subtraction of the yield obtained in the corresponding 60–100% event class [80]. (Right) The v_2 values extracted from two-particle correlations in p–Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ for hadrons (black squares), pions (red triangles), kaons (green stars) and protons (blue circles) as a function of p_T in the 0–20% event class after subtraction of the 60–100% event class [42].

v_2 has been measured for numerous hadrons, including open and hidden charm [42–46]. The mechanism causing these correlations is not fully understood, but the long-range nature does indicate that the correlations must originate from early stages; either from anisotropy in the initial state momentum distribution [83, 84] or from anisotropy in the spatial distribution that is imprinted on the momentum distributions by scattering [85, 86]. It is often deduced from the analogy to heavy-ion collisions that the final-state scattering may result in early collective motion, carrying over the initial-state anisotropies to the final state. Such an explanation would in particular be able to explain the observed dependence of the v_2 values on hadron mass, which...
is characteristic of collective motion. If this explanation is corroborated, one will have to take into account strong final state interactions of hadrons with the produced medium and thus the information obtained from hadron transverse momentum spectra would be of little use for the understanding of the initial state. Radial flow of hadrons \cite{87} will lead to an enhancement of the particle yield in the intermediate p_T range (1–3 GeV/c) interesting for saturation effects, while other mechanisms, like final-state energy loss of hadrons, which would have an opposite effect on momentum spectra, can also not be excluded. This further emphasizes that there are significant uncertainties in our understanding of hadron production in p–Pb collisions, in particular at low to intermediate p_T, where also saturation effects are expected to play a role.

FoCal can contribute to characterizing the long-range correlations by measuring azimuthal correlations at forward rapidity in pp and p–Pb collisions, but also by measuring correlations between particles produced at midrapidity and at forward rapidity (and possibly at backward rapidity using the muon spectrometer with muons or the MFT with charged particles), which probe the long-range nature of the correlations. Measurements with heavier mesons (η, ω) can be used to test mass scaling hypotheses. Of particular interest are correlations of forward isolated photons with midrapidity hadrons since they test mechanisms at work in the initial state of the collisions, as isolated photons should suffer very little influence from final state interactions (see Fig. 5). Moreover correlations with forward jets can shed further light on the mechanism underlying the ridge phenomena.

2.3 Parton energy loss in Pb–Pb collisions

One of the hallmark results from high-energy heavy ion collisions is the observed suppression of high-p_T particle production compared to the expected scaling with the number of binary nucleon-nucleon collisions. This suppression arises from parton energy loss due to interactions of the high-energy partons with the Quark Gluon Plasma, usually called jet quenching, before they fragment into high-p_T hadrons \cite{24}. So far, most measurements have been performed at midrapidity, and in models a boost-invariant density distribution is used. However, it is expected that the density of the QGP decreases at forward rapidity, while the fraction of quark jets increases.

As of yet, the knowledge on the rapidity dependence of the single hadron suppression is very limited. At RHIC the only forward measurements of hadron spectra in central Au–Au collisions have been performed by the BRAHMS experiment. Figure\ref{fig:16} shows results of the nuclear modification factor (R_{AA}) of the forward negative pion production compared to the results for neutral pions at midrapidity as measured by PHENIX. A suppression is apparent in both modification factors. However, while the midrapidity measurements are of relatively high precision, the forward measurements suffer from large uncertainties and are of very limited reach in transverse momentum. This is due partially to the steeper momentum spectra at high rapidities and partially due to the fact that there is no large acceptance detector for high rapidity at RHIC. Given the large statistical uncertainties, no strong statement about the rapidity dependence of R_{AA} at RHIC can be made. At the LHC, the nuclear modification factor has been measured out to $\eta \approx 2$, see right panel of Fig.\ref{fig:17}; this covers however only a small fraction of the available dynamic range in rapidity. These measurements are unfortunately not conclusive – no clear systematic trend
Fig. 16: Nuclear modification factor R_{AA} as a function of p_T for identified pion production in central Au–Au collisions at RHIC. Shown are measurements of π^0 at midrapidity by PHENIX [88] (blue symbols) and of π^- at $\eta = 2.2$ by BRAHMS [49] (red symbols). Only statistical errors are shown.

can be identified in the data, also because of the limited range in pseudorapidity.

Jet quenching at high rapidities is of interest because the conditions of the hot and dense matter do change with rapidity, although this dependence is not expected to be strong as one can see from pseudorapidity densities of charged particles, which do not vary very strongly. In addition to variations in the medium properties there are other rapidity dependent effects relevant for parton energy loss measurements, e.g. the relative mixture of quark vs. gluon contributions, which is modified due to the contributions of larger Bjorken-x for one of the primary partons, and the slope of the initial parton spectrum, which is strongly modified when one gets closer to the kinematic limit at high rapidity. The latter can be particularly important for the measurement of the single hadron nuclear modification factor, as shown in the left panel of Fig. 17. In fact, while high-p_T hadrons at midrapidity originate from a broad distribution of parton p_T, this source of uncertainty is reduced at high rapidity, where the kinematic range of parton p_T is limited. In addition, this effect would lead to a stronger suppression at large rapidity compared to midrapidity. The measurements of the nuclear modification factor of neutral pions in a more forward rapidity range with FoCal will allow to explore this region in more detail.

The study of parton energy loss and the medium density at forward rapidity is also important to interpret the existing measurements of quarkonium production at forward rapidity. To illustrate some of the open questions in charmonium production and suppression, the left panel of Fig. 18 compares the nuclear modification of J/ψ production at RHIC and LHC. The smaller suppression of J/ψ at the LHC compared to RHIC is now generally interpreted as an interplay of Debye-screening, which is dominant at RHIC and leads to a strong suppression, and an additional final state production mechanism (statistical hadronisation or kinetic recombination), which becomes important at LHC and compensates part of the suppression.
Fig. 17: Nuclear modification factor R_{AA} of jets and hadrons in central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. (Left) R_{AA} of jets and hadrons as a function of rapidity as calculated with YaJEM [89]. (Right) R_{AA} for charged hadrons in different p_T intervals as a function of pseudorapidity measured in ATLAS [90].

Our understanding is unfortunately complicated by the different rapidity coverage of the measurements. The most extensive measurements of charmonium suppression at the LHC have been performed with the Muon Spectrometer of ALICE at forward rapidity. The rapidity dependence was studied in the PHENIX experiment at RHIC. There, more forward measurements (albeit with limited coverage) show a stronger suppression than at midrapidity, as visible in Fig. 18, so one would not expect the even less strong suppression as seen by ALICE to be due to the different rapidity.
Further indications for the rapidity dependence can be found in a comparison of midrapidity and forward rapidity measurements of J/ψ suppression in Pb–Pb collisions by ALICE as displayed in the right panel of Fig. [18]. These measurements have unfortunately only been possible for centrality integrated Pb–Pb collisions, but they do show interesting features. While the suppression seems to be small and very similar for $|y| < 0.8$ and $y = 3$, R_{AA} decreases significantly for $y > 3$. This decrease is not explained by nuclear shadowing, as is seen from the comparison to the theoretical curves shown in the figure. Possibly there are other initial state effects that play a role here (like gluon saturation as discussed earlier), or the properties of the medium do change significantly as a function of rapidity.

In addition to π^0 measurements, for which the FoCal performance in heavy ion collisions has been evaluated in detail as discussed in the next sections, we also expect that FoCal can provide measurements of the heavier η and ω mesons, and possibly thermal photons with interferometric techniques.

2.4 Summary of the FoCal physics program

The main goals of the FoCal physics program are to

- quantify the nuclear modification of the gluon density in nuclei at small-x and Q^2 by measuring isolated photons in pp and p–Pb collisions;
- investigate non-linear QCD evolution by measuring azimuthal $\pi^0-\pi^0$ correlations and isolated $\gamma-\pi^0$ correlations in pp and p–Pb collisions;
- investigate the origin of long range flow-like correlations by correlating neutral meson production over large range in rapidity in pp and p–Pb collisions
- quantify parton energy loss at forward rapidity by measuring high-p_T neutral pion production in Pb–Pb collisions.

More measurements will be possible but are not further emphasized in this document, such as the measurements of Y and (di-)jets in ultra-peripheral collisions, W, Z, jet or di-jet production in pp and p–Pb collisions, and photon interferometry (HBT) and reaction plane determination in Pb–Pb collisions.
3 Conceptual design

3.1 General considerations

The most challenging measurements of the anticipated physics program of FoCal have been identified as:

1. The measurement of direct photons in pp and p–Pb collisions at forward rapidity to explore the small-x structure of protons and nuclei at high energy.

2. The measurement of high transverse momentum neutral pions in Pb–Pb collisions, and their modification relative to pp collisions, to probe the hot and dense strongly interacting medium away from midrapidity.

These measurements impose requirements on the overall design and performance of the proposed detector in this Letter of Intent.

![Fig. 19: Installation of the FoCal at the 7m location with FoCal-E and FoCal-H detectors.](image)

Large rapidity measurements require a placement of the detector close to the beam pipe. As the particle density in these regions is very high due to the kinematic boost of produced particles a large distance from the primary interaction vertex is advantageous. The favorite location of FoCal is on the A-side of the experimental setup outside of the ALICE magnet and in front of the compensator magnet. On this side there is enough room to place both an electromagnetic (FoCal-E) and a hadronic (FoCal-H) calorimeter, as illustrated in Fig. [19]. The distance of the detector to the nominal interaction point for this scenario is $z \approx 7$ m. The transverse extent of the calorimeters at this position is not severely limited by integration issues, and will be constrained by physics considerations and overall cost. We consider this the default position of the FoCal.
As emphasized in Sec. 2.1.4, by extending the coverage to forward rapidities, a large dynamic range down to small x is accessible at the LHC. The phase space acceptance as a function of p_T and η for forward photons at the LHC is shown in Fig. 20 for p–Pb collisions at $\sqrt{s_{NN}} = 8.8$ TeV. The grey area indicates the part of phase space that is kinematically not reachable for these collisions. The FoCal geometric acceptance of about $3.2 \leq \eta \leq 5.8$ is indicated by the red area. This corresponds to an outer radius of $r \approx 57$ cm and an inner radius of $r \approx 4$ cm. The lower limit on p_T is not well defined as it depends on the actual signal-to-background ratio of the measurement. This arbitrariness is indicated by the lighter colour at low p_T. Estimates for the minimum reachable values of Bjorken-x for $x_{\text{min}} = 10^{-4}$ and $x_{\text{min}} = 10^{-5}$ are shown with dashed lines using Eq. 2, which is a good approximation of the kinematics of the incoming partons for a LO process. Simple considerations on geometrical acceptance, however, neglect other limitations for the measurement of direct photons. The main limitation arises from the necessity of discriminating between direct photons and decay photons from neutral pions. This can be estimated by assuming that a detector is capable of resolving the two decay photons from a neutral pion, when they have a certain minimum lateral separation d at the detector, located at a distance z_{det}. The corresponding maximum transverse momentum can be approximated for
\(\eta > 2 \) and \(d \ll z_{\text{det}} \) as

\[
p_T^{\text{max}} \approx 2m_\pi e^{-\eta} \sqrt{\frac{2}{(1 - \alpha^2) \left(1 - \cos \frac{d}{z_{\text{det}}}
ight)}},
\]

where \(\alpha \) denotes the decay photon energy asymmetry \(\alpha = |E_1 - E_2|/(E_1 + E_2) \). In Fig. 20 the approximate limits in \(p_T \) accessible for different detector granularity of 1, 5 and 50 mm at \(z_{\text{det}} = 7 \) m, which corresponds to the foreseen position of FoCal, are shown as the coloured lines. An energy asymmetry of \(\alpha = 0.5 \) was chosen, which implies that for the indicated \(p_T \) half of the neutral pions will have a separation larger than the limiting value used. An effective two-photon resolution of \(d = 5 \) mm is a rather conservative assumption, while \(d = 1 \) mm would be desired for the envisaged FoCal detector. The value \(d = 50 \) mm is a hypothetical coarser granularity used for illustration purpose. The upper limit in \(p_T \) determined from the conservative \(d = 5 \) mm estimate corresponds to \(p_T \approx 25 \text{ GeV}/c \) at \(\eta = 3.5 \) and \(p_T \approx 5 \text{ GeV}/c \) for \(\eta = 5 \), while for \(d = 1 \) mm the limit would be well above \(p_T = 10 \text{ GeV}/c \) even at \(\eta = 5.8 \). The corresponding photon energies approximately range between 0.3 TeV and 1.5 TeV. From the above considerations it is clear that the \(\pi^0 \) discrimination performance will crucially depend on the granularity, and will be quantitatively studied with GEANT simulations in Sec. 4. For reference, the electromagnetic calorimeter of LHCb, which is located approximately at \(z_{\text{det}} = 12.5 \) m, has \(d \approx 40 \) mm for \(\eta > 3 \) [1], leading to maximal \(p_T \) below 3.5 GeV/c at \(\eta = 4 \). This should be taken only as a rough estimate, e.g. because here the value of the calorimeter cell size has been used as a proxy for the two-photon separation, which is an optimistic assumption. However, it is clear that the LHCb detector is severely limited for a direct photon measurement using its electromagnetic calorimeter.

3.2 The FoCal Design

Since the intrinsic energy resolution requirements of the FoCal are very moderate, a sampling calorimeter design is well-suited for both the electromagnetic and hadronic detector components of the FoCal.

3.2.1 The FoCal-E Design

For the electromagnetic calorimeter (FoCal-E) a small shower size is necessary to minimize occupancy effects and to optimize the photon shower separation. Therefore, tungsten is the absorber material of choice due to its small Molière radius \(R_M \) and radiation length \(X_0 \), with values of \(R_M = 9 \text{ mm} \) and \(X_0 = 3.5 \text{ mm} \). Consequently, the FoCal-E is designed as a Si+W sampling calorimeter, in order to maintain a compact electromagnetic calorimeter with small effective Molière radius and with a fine lateral granularity readout. Since the energy resolution requirements for the FoCal-E are not very stringent, a rather coarse sampling layer thickness of \(\approx 1 \ X_0 \) can be chosen to minimize cost. A total depth of around 20 \(X_0 \) is needed to provide sufficient linearity at large energy, leading to a total depth of 15 – 25 cm, depending on the inter-layer distance.
In a conventional calorimeter design, the transverse cell size is chosen to be similar to R_M, however, simulations show that a granularity as fine as $\sim 1 \text{ mm}$ is still useful for π^0 identification. In addition, high granularity will enhance the capabilities to resolve multiple hits in a high multiplicity environment. However, employing the minimum cell size in all layers and reading them all out independently leads to a prohibitively large data volume and would dramatically increase the cost. Longitudinal segmentation adds further capability for particle identification and background rejection. Therefore the design under consideration has longitudinal segments with cells of moderate size interspersed with layers with very high granularity.

The FoCal-E detector will consist of a Si+W sampling calorimeter hybrid design using two different Si readout technologies:

1. Pad layers, with transverse cell sizes of $\approx 1 \text{ cm}^2 \approx R_M^2$;
2. Pixel layers, with digital readout and a cell size of $\approx 30 \times 30 \mu \text{m}^2$, i.e. much smaller than the Molière radius, read out independently.

![Fig. 21: Schematic view of the structure of the FoCal-E detector.](image)

The schematic view of the longitudinal structure of the FoCal-E is shown in Fig. 21. All layers will consist of W sheets of $\approx 1X_0$ followed by silicon sensors. The figure schematically shows the FoCal-E structure with 18 pad layers and two pixel layers, positioned at the 5th and 10th layer. The cells in each layer will be read out individually, but for the purpose of cluster finding
the layers are grouped into 6 segments. Longitudinal summing of layers may be considered as a data compression technique. The positioning of the pixel layers is a balance between two-shower separation, for which it is better to sample the shower early in its development and energy resolution and efficiency, which are better around the shower maximum. In addition, the location of the shower maximum depends on the energy of the particles. The current implementation with a pixel layer at layer 5 and 10 provides a good balance between these requirements, as is shown by the performance studies in Chapter 5. Future studies are planned to further optimise the location of the pixel layers.

Monolithic active pixel sensors (MAPS) provide the most cost-effective way to implement a large area pixel detector. The pixel layers of the FoCal-E will use a sensor design based on the ALPIDE chip that was developed for the ALICE ITS and MFT [93]. The pad layers use silicon pad sensors which have a very fast charge collection. A charge sensitive amplifier and digitisation readout ASIC will provide trigger and time information.

The integration time of ALPIDE sensors is around 5μs, which is short enough to properly separate different events in Pb–Pb collisions with a maximum interaction rate of ~ 50 kHz, pile-up will occur in pp and p–Pb collisions where interaction rates of up to 1 MHz are envisaged. The accurate time information from the pad layers of $O(25\text{ns})$ will be used to disentangle pile-up events. Section 6 gives further details on the construction and readout of the FoCal-E.

3.2.2 The FoCal-H design

The electromagnetic calorimeter of FoCal will be complemented with a hadronic calorimeter (FoCal-H), which is needed for photon isolation and jet measurements. Ideally, the FoCal-H should cover the same range in pseudorapidity as the FoCal-E, and be located as close as possible behind the FoCal-E to minimize its size, and to avoid blow-up of showers which start in the FoCal-E. Due to support and access constraints, it appears that the most feasible location to install a FoCal-H would be at a distance of ~ 7.5 m from the IP, just in front of the ALICE compensator magnet, as indicated in Fig. 19.

FoCal-H can be built as a conventional sampling hadronic calorimeter with a total thickness of $\sim 8\lambda_{\text{had}}$ and an extent of $\Delta z \sim 1.5$ m. The detector is of similar transverse size as FoCal-E. With an outer dimension $r \sim 0.7$ m, the total weight is estimated to be ~ 15t. While FoCal-H consists of relatively conventional technology, the weight and size impose constraints on the location and support structure. Section 6.7 gives further details on the construction and readout of the FoCal-H.

3.2.3 The beam pipe

The part of the beam pipe located between the interaction point and the FoCal should be optimised to minimise conversions of photons before they reach FoCal. This is in particular important for the part of the beam pipe close to the interaction point and farthest away from the FoCal. Furthermore it is important that the beam pipe has no pumps, valves and flanges in the rapidity range for the FoCal. Ideally, the main connection should either be placed behind FoCal (at 7.5
Fig. 22: Schematic view of the beam pipe profile from the interaction point at $z = 0$ to the FoCal at $z = 7$ m.

to 8.5 m from the interaction point), or just in front of FoCal ($z = 7.0$ m) and have an outer radius of 4 cm or less.

A possible profile of the beam pipe is shown in Fig. 22. The radius of the beam pipe near the interaction point is 1.91 cm, while at large distances it is 3.5 cm. As a result, the beam pipe changes radius within the FoCal acceptance, which is indicated by the blue lines. Ideally, the angle of the beam pipe in the conical section is shallower than the angle of the particles that pass it at a given rapidity. This leads to a relatively long conical section in which the radius gradually increases. To minimise conversions and hadronic interactions in the beam pipe, it should be made of a suitable Be alloy and be as thin as possible. In the simulations, a wall thickness of 800 µm (equal to the current ALICE beam pipe) is used. A thin and light support of the beam pipe will be designed, which will likely shadow a small part of the acceptance of FoCal.

Preliminary studies comparing the ideal setup sketched above with a more realistic beam pipe with support structures, flanges, and bellows indicate that the performance of the calorimeter is still close to optimal, as long as the conical beam pipe is made of Be alloy. The corresponding conversion probability is shown in Fig. 23 compared to analytical calculations of a Be or Al pipe only. Using aluminium instead of beryllium, however, would severely impact the performance, because the photon conversion probability increases significantly (close to 0.7 at high η due to the long path through the material at these forward angles), which is expected to affect the capability to tag photon pairs via the invariant mass method. The performance results reported in the next sections were obtained for the Be beam pipe only (corresponding to the dashed red line in Fig. 23). Full studies comparing the performances of various beam pipe scenarios are ongoing.

An idea that will be further explored in the future is to increase the radius of the beam pipe conically to maximally the radial size of the FoCal, and to reduce it to the nominal radius of
Fig. 23: Conversion probability for a Be beam pipe, with flanges and bellows and a realistic support structure, compared to analytical calculation of just a Be or Al beam pipe.

\(r = 3.5 \text{ cm} \) just before the surface of the calorimeter. In this way the material in front of the calorimeter would be minimal. However, for this scenario, a number of integration issues will need to be considered, including in particular the access to the ITS.

3.2.4 The location of FIT

For Run 3 and beyond, ALICE will have a new fast interaction trigger (FIT) [94], which will be the forward trigger, luminometer, and interaction-time detector. The FIT will consist of two arrays of Cherenkov quartz radiators with MCP-PMT sensors (FT0, on the A and C side) and of a plastic scintillator ring (FV0, only on the A side). The A and C arrays will be placed on the opposite sides of the nominal interaction point. The A-side is located at \(z = 330 \text{ cm} \), and covers an acceptance of about \(2.2 < \eta < 5.0 \), which largely overlaps with the acceptance of FoCal. Preliminary simulations of the impact of FIT on the FoCal indicate that the effect of the additional material only has a relatively small effect on the photon reconstruction performance. However, it should be noted that not all the material related to services has been implemented. The effect of the created conversions in the material could be significantly reduced if the A-side of the FIT would be moved to direct contact with the front surface of the FoCal. The feasibility of such a modification in the placement of the detector and the impact on the functionality of the detector are being investigated jointly with the FIT project. Recently, two small scintillator arrays of the Forward Diffractive Detector (FDD) were added to the FIT setup at 17 m on the A side (4.7 < \(\eta < 6.3 \)) and at -19.5 m on the C side (\(-6.9 < \eta < -4.9\)). The impact of FoCal on the performance of FDD-A will be evaluated in the future.
4 Performance simulations

The expected FoCal performance for various observables has been evaluated using several event generators and GEANT simulations of the detector response and a first version of the shower reconstruction algorithm.

4.1 The detector model

For the performance studies in this LoI, a simplified FoCal geometry based on the description in Sec. 3.2 has been implemented in AliRoot\(^4\), using GEANT3 \(^95\) for geometry and as transport engine.

The FoCal detector is positioned at \(z = 7 \) m from the interaction point, as shown in Fig. 19. The detector is implemented with an approximately circular opening of 4 cm radius around the beam pipe, and covers a radial distance up to \(r = 0.6 \) m. The resulting rapidity coverage is approximately \(3.2 < \eta < 5.8 \).

The structure of FoCal-E, which is implemented in the simulation, is shown in Fig. 21. The detector consists of 20 layers, organized into 6 segments. Two of the segments are pixel layers with a digital pixel readout with a granularity of \(50 \times 50 \) \(\mu \)m\(^2\), which are summed into 0.5 mm\(^2\) macro-pixels. No explicit simulation of charge diffusion and sharing between pixels is implemented, but to simulate the fluctuations in the deposited charge, the sensitive layer has a thickness of 30 \(\mu \)m (supported by a 'bulk' of 470 micron Si). The pixel layers are located at a depth of 5\(X_0 \) and 10\(X_0 \). The other segments consist of 4 or 5 layers with silicon pad readout with a thickness of 500 \(\mu \)m and a segmentation of \(1 \times 1 \) cm\(^2\). Signals from the four consecutive layers are summed to form a pad-sized tower for the segment. Each FoCal-E layer consists of a 3.5 mm tungsten converter layer, 500 \(\mu \)m of silicon detector material and small amounts of fiberglass (G-10), copper and air foreseen for readout services. The total layer thickness is 5.6 mm.

The FoCal-H consist of 50 layers of 3 cm Cu layers with 0.2 cm scintillator as the sensitive material in the simulation. The segmentation in the simulation is \(2 \times 2 \) cm\(^2\). The actual design of the FoCal-H is expected to evolve and be optimised, so the current implementation should really be seen as a first sketch which gives a reasonable approximation of the expected performance.

In the simulations of both detectors the response is hit-based. No detailed detector response nor additional smearing was introduced, since their effects are expected to be negligible. As a first refinement one could include charge diffusion in the pixel layers. In the current simulations the cluster size for a single track is essentially 1, but it is larger in practice. This effect was studied in some detail in the test beam analysis with the pixel detector prototype (see Sec. 6.3) and mainly affects the shower profile very close to the shower axis and is not expected to degrade the two-shower separation power. Noise effects are only important at low energy and therefore the impact is small on forward measurements, where the shower energies are larger (\(> 50 \text{ GeV} \)).

\(^4\)See http://alice-offline.web.cern.ch/
4.2 Cluster finding algorithm

In the simulation, the energy depositions generated by GEANT3 are directly used as detector signals in the analog readout of the pad layers, while the signals in the pixel layers are digitised. Signals above a threshold are counted as a hit.

A clustering algorithm is then applied to the simulated detector signals. The algorithm has been developed to run both on the low (pad) and high (pixel) granularity segments and can be applied for high-occupancy Pb–Pb collisions as well as pp collisions. For Pb–Pb collisions, more restrictive parameter settings are used. The cluster algorithm starts by finding clusters in each segment independently, using the following principles:

1. Search for cluster seeds on an energy-sorted list of digits from the segment. Only digits of a minimum energy (SeedThreshold) are considered as a seed. A minimum distance between cluster seeds (MinRing) is also imposed at this stage.

2. For each seed, collect all digits within the cluster radius (MaxRing) to form a cluster.

3. Create, merge, and split clusters based on weights assigned by seeds to all nearby digits. The weights are calculated using a parametrised shower shape for each segment, based on a double exponential function which has been fit to single-photon simulations (see Fig. 50 for example profiles). The weights depend on the energy of the seed and the distance between the digit and the seed.

For some segments, so-called pre-seeds are used, i.e. seed positions that are determined by clusters found in another segment. Seeds created in such a way cannot be rejected.

The algorithm is very fast, $O(n)$, but requires the digits to be sorted, which is $O(n \log(n))$. Its advantage is that it splits/merges clusters as it creates them, based on the definition of the weighting function, which is tuned to reproduce the shape of an electromagnetic shower. The parameters: MinRing, MaxRing, SeedThreshold, and the 3 parameters for the shower shape parametrisation are tuned to obtain a good efficiency and a reasonably low fake rate due to shower splitting.

After the clusters have been found in each of the segments, the clusters are combined into full-detector clusters. The algorithm first loops over the pad and then the pixel layer segments separately. The clusters found in the different pad segments are matched and combined into full-depth pad clusters. The clusters in the individual pixel layers are also matched and combined into summed pixel clusters. In the final step, the summed pixel clusters are used to separate photon pairs that cannot be distinguished in the pad segments: a geometrical matching of the pixel and pad clusters is performed and if more than one pixel cluster is found in the same area as a pad cluster, the pad cluster is split into the corresponding number of pixel clusters, with the energy partitioned according to the relative energies of the clusters found in the pixel layers. The final shower position is calculated as the average of the position found in the two pixel layers.

The expected performance of the FoCal has been evaluated using both single particle simulations (uniform in p_T and η) and full event simulations with the PYTHIA [96] and HIJING [97].
event generators (without pile-up) for pp and Pb–Pb collisions, respectively. The cluster algorithm and its parameters can be further optimized for different purposes. In the following, two settings are used: the default settings for single-particle studies, as well as an optimized parameter set for pp and p–Pb collisions studies with reasonable balance between avoiding cluster splitting for single photons and achieving a good efficiency for π^0 decay pairs. For Pb–Pb collisions, different settings are used to be more robust against the large occupancy.

4.3 FoCal-E response for photons

Figure 24 shows the photon reconstruction efficiency (left panel) and energy resolution (right panel), using the current cluster finder in events with a single photon per event. As expected, a cluster is found for every photon at high energy, while at lower energy ($E \lesssim 75$ GeV) there is a gradually increasing loss of clusters, due to selection criteria in the cluster finding algorithm. These criteria are imposed to reduce cluster splitting effects. The energy (E) dependence of the resolution (σ) can be parametrised as

$$\frac{\sigma(E)}{E} = \frac{25\%}{\sqrt{E}} \oplus 1\%,$$

with the photon energy E given in GeV and \oplus standing for addition in quadrature. The constant term of 1% here is purely based on the GEANT3 simulation. In a real detector, channel-to-channel gain and linearity variations will contribute to this term. Note that contributions from pure electronic noise are usually negligible at high energy where this term is dominant. The actual performance of FoCal-E in the high energy regime will be determined with test beam measurements. A larger constant term in the energy resolution of up to 5% is not expected to impact the analysis, as long as the value is known from test beam measurements.

4.4 FoCal-E response for neutral pions

Events with single π^0 were simulated and the cluster finding algorithm was applied to the simulated detector response. The two clusters which are closest to the impact point of the photons
from the π^0 decay were selected and the invariant mass was calculated. The resulting invariant mass distributions are shown in Fig. 25 for several p_T intervals and η ranges.

To further characterise the π^0 response, a Gaussian was fit to the invariant mass distributions. The mean (μ) and width (σ) of the fit are shown in Fig. 26 versus p_T. The mean reconstructed invariant mass is close to the expected value $m_{\pi^0} = 135$ MeV/c^2, but shows an increasing trend as a function of p_T, which is probably due to cluster merging as well as energy resolution effects. The mass resolution $\sigma(m)$ is around 10 MeV/c^2 for most of the explored region, except at higher p_T (> 14 GeV/c) for the larger pseudorapidity $\eta > 4.5$ and $p_T > 10$ GeV/c for $\eta > 5.0$, where cluster overlap in the pixel layers affects the performance.

The main figure of merit in view of photon detection is the π^0 reconstruction efficiency. Figure 27 shows the reconstruction efficiency for neutral pions as a function of transverse momentum p_T for three different selections in pseudorapidity. A π^0 is considered reconstructed if at least two clusters are found and the invariant mass of the two clusters is in the range $0.07 < m_{\text{rec}} < 0.18$ GeV/c^2. It can be seen that the reconstruction efficiency is above 0.9 over a broad range of $p_T > 5$ and $p_T < 15$ GeV/c, with a stronger decrease at high p_T for the larger pseudorapidity range.

4.5 FoCal-E response for J/ψ

To demonstrate the feasibility to measure J/ψ transverse momentum spectra in UPC collisions (where the combinatorial background is small), we show in Fig. 28 the invariant mass distributions of J/ψ decaying into the e^+e^- channel reconstructed from cluster pairs for a low
Fig. 26: Mean (left panel) and width (right panel) of a Gaussian fit to the invariant mass distributions from Fig. 25.

Fig. 27: Reconstruction efficiency for neutral pions as a function of energy E (left panel) and transverse momentum p_T (right panel), for three different pseudorapidity intervals.
Fig. 28: Invariant mass distributions in the J/ψ mass region reconstructed from cluster pairs for 0.2 < \(p_T \) < 0.3 GeV/c (left panel) and for 4 < \(p_T \) < 5 GeV/c (right panel). The mean (\(\mu \)) and rms (\(\sigma \)) of a Gaussian fit is given as well.

\(p_T \) (0.2 < \(p_T \) < 0.3 GeV/c) and a high \(p_T \) (4 < \(p_T \) < 5 GeV/c) interval. The mass position is shifted below the PDG value of the J/ψ by less than 5%. The mass resolution at low \(p_T \) (\(p_T < 1 \) GeV/c) is about 2.5%, and decreases by about a factor 2 at high \(p_T \) (\(p_T > 10 \) GeV/c), and allows the 1S and 2S states to be separated. The reconstruction efficiency is about 60% at low \(p_T \) and increases to about 90% at high \(p_T \).

4.6 FoCal-H performance for charged pions

To characterise the response of the FoCal-H, we simulated a sample of charged pions with a momentum of 50 GeV, as well as a sample with a uniform distribution in the range 0 < \(p_T \) < 20 GeV/c. If only the FoCal-H is used, the response distributions are asymmetric with a tail to small signals, due to hadronic interactions in the FoCal-E. For a more controlled performance, the FoCal-E and FoCal-H signals are added up, with a weight that is determined using the sample for pions with a single energy. The resulting energy resolution of the combined FoCal-E and FoCal-H signals is shown in the left panel of Fig. 29. The resolution here is purely instrumental and does not include effects from cluster finding (e.g. rejecting tails of clusters).

4.7 Jet reconstruction in pp

The performance of the FoCal for reconstructing jets was studied using the PYTHIA6 generator to simulate pp collisions at 13 TeV. Due to the hadronic calorimeter, the shift of the energy scale is very small. The relative jet transverse momentum resolution for reconstructed jets with \(R = 0.4 \) with transverse momenta between 20 and 30 GeV/c is shown in the right panel of Fig. 29 and found to be about 8%. The corresponding jet energy ranges from about 0.4 to 1.6 TeV, and the position resolution in \(\eta \) and \(\phi \) has been found to be better than 0.025.

4.8 \(\pi^0 \) reconstruction in Pb–Pb

The performance for \(\pi^0 \) reconstruction in Pb–Pb collisions was explored by embedding single \(\pi^0 \) into simulated central Pb–Pb events at \(\sqrt{s_{NN}} = 5.5 \) TeV. The cluster finder algorithm in
Fig. 29: (Left) Energy resolution of the combined FoCal-E and FoCal-H signals for charged pions. The FoCal-E signals are scaled relative to FoCal-H to provide optimal resolution. (Right) Jet transverse p_T resolution for jets with $R = 0.4$ in pp collisions at 14 TeV.

Fig. 30: Example invariant mass distributions for π^0 embedded in central Pb–Pb events (red solid lines), compared with single π^0 event simulations (blue solid lines) for two different p_T intervals. Only matched reconstructed photon pairs are shown. The combinatorial background is discussed in Sec. 5.4.

These studies were based on the pp algorithm, but restricting the cluster size, i.e. distance over which cells are added to a cluster to neighboring cells. The study presented here should be taken as an example of the minimum expected performance; it is likely that the performance can be improved in Pb–Pb events by optimizing the cluster finding algorithm. In particular, we observe that in central Pb–Pb events, most of the pad cells contain signals; the cluster finder is not optimised to deal with such a high occupancy.

To illustrate the performance of the FoCal for π^0 reconstruction in Pb–Pb events, Fig. 30 shows a comparison of the invariant mass distribution of reconstructed and matched photon pairs from π^0 decays in the embedded simulation and single particle simulations (same as shown in Fig. 29).
Fig. 31: Efficiency for π^0 reconstruction in embedded events which consist of a single π^0 combined with a full simulated central Pb–Pb collision. The two marker styles indicate two different pseudorapidity intervals.

In the lower p_T interval (5–9 GeV/c) a clear shift and broadening of the mass peak is seen, due to the overlaps between the signal showers and other showers (electromagnetic and hadronic) in the event. At higher p_T (15–20 GeV/c), the mass peaks for embedded events are similar to the single particle simulations.

Figure 31 shows the efficiency for π^0 reconstruction in embedded events. At high $p_T > 10$ GeV/c, the efficiency is around 80%, while at lower p_T the efficiency decreases due to the presence of background energy and the use of more restrictive selection criteria in the cluster finding.
5 Physics performance in pp, p–Pb, and Pb–Pb collisions

5.1 Direct photon performance with full pp simulations

Two main techniques will be used to suppress decay photon background in the direct photon measurement:

1. Direct rejection of π^0 candidates based on their invariant mass
2. Isolation cut

The efficiency of both techniques is evaluated using two samples of fully simulated PYTHIA6 events: one sample is based on minimum bias event generation and contains mostly decay photons from π^0 and other hadrons, while the other sample consists of only events with the direct photon production subprocess enabled so that each event contains a direct photon. Before running the detector simulation, the events are preselected to have at least one photon with $p_T > 4$ GeV/c in the acceptance of the FoCal, to increase the efficiency of the simulation. We compared the results of these “triggered” simulations with minimum bias simulations to verify that this procedure does not remove any significant background contributions, e.g. from hadron showers in FoCal.

The direct rejection of π^0 decay photons is implemented as follows: the candidate cluster is paired with all other clusters with energy $E > 2$ GeV in the event and the invariant mass $m_{\gamma\gamma}$ is calculated. For each pair, the mass is compared to the expected π^0 mass (135 MeV/c^2) and the value that is closest to the π^0 mass is kept. If the mass is within the selection window $70 < m_{\gamma\gamma} < 180$ MeV/c^2, the candidate cluster and the partner cluster are rejected.

Photon isolation selection criteria are an important way to suppress decay backgrounds in direct photon measurements. We explored the simplest variant of this technique, using a cone of $R = 0.4$ around the cluster under study and adding the transverse momenta p_T of the clusters in this cone, to obtain $E_{T,\text{iso}} = \sum E_{T,i}$. The left panel of Fig. 32 shows the resulting isolation energy $E_{T,\text{iso}}$ distribution for clusters with $p_T > 10$ GeV/c from minimum bias PYTHIA simulations at 14 TeV, with only background photons (i.e. photons mostly from decays). In the figure, the isolation energy obtained from only the FoCal-E is compared with the one obtained from combined signal of FoCal-E and FoCal-H. Adding the hadronic signals from FoCal-H clearly increases the observed isolation energy, which significantly improves the selectivity of the isolation cut. There is good agreement between the generated particle level distributions (shown also in the figure with dashed curves) and the reconstructed (detector level) values.

The right panel of Fig. 32 compares the ratio of the efficiency for direct photon signals and background clusters from simulated minimum bias events, i.e. quantifying the improvement in the signal to background ratio as function of the isolation energy cut with only the FoCal-E and the combined response of FoCal-E and FoCal-H. The addition of the hadronic calorimeter significantly improves the signal-to-background ratio. For further analysis, we will use combined FoCal-E and FoCal-H isolation and select direct photon candidates by requiring $E_{T,\text{iso}} < 3$ GeV/c.

The left panel of Fig. 33 shows the efficiency to accept clusters for various rejection criteria in
Fig. 32: Isolation energy ($E_{T,\text{iso}}$) distribution in a cone $R = 0.4$ around clusters with $p_T > 10 \text{ GeV}/c$ from fully simulated pp events with $\sqrt{s} = 14 \text{ TeV}$. (Left) Comparison of FoCal-E only (red) and FoCal-E and FoCal-H combined (blue) distributions, for MC particle level (dashed) and fully reconstructed (solid) quantities. (Right) Comparison of the signal-to-background efficiency ratio ($\varepsilon_{\text{sig}}/\varepsilon_{\text{bkg}}$) as a function of isolation energy cut with FoCal-E only (blue open circles) and FoCal-E and FoCal-H combined (red solid circles).

Fig. 33: (Left) Efficiency for background clusters in full PYTHIA pp simulations at $\sqrt{s} = 14 \text{ TeV}$ with the various criteria discussed in the text. A low efficiency corresponds to a high rejection. (Right) Corresponding efficiency for direct photons.
pp collisions at 14 TeV simulated with PYTHIA, where a low efficiency is desirable because it results in a high rejection. The decay photon rejection based on the shower reconstruction (SS) and invariant mass cut (IM) rejects about 90% of the background clusters (efficiency 10%) for the entire p_T range. The isolation cut is more efficient at high than at low p_T. The combined effect of both selection criteria is a rejection of 93% of the background (efficiency of 0.07) at $p_T = 4$ GeV/c, which improves to about 97% at $p_T > 6$ GeV/c.

The right panel of Fig. 33 shows the efficiency of direct photon reconstruction, including the effect of the background rejection criteria, based on the sample of PYTHIA direct-photon events. The cluster finding efficiency is above 95% over the studied p_T range. The decay rejection with the invariant mass method introduces an additional efficiency loss of about 0.45, mostly due to “random rejection” of pairs where the partner photon originates from an uncorrelated emission. This effect strongly depends on pseudorapidity. The inefficiency introduced by the isolation cut is small.

The left panel of Fig. 34 shows the fraction of clusters that originate from direct photons. This ratio was obtained by analysing the minimum bias and direct photon PYTHIA simulations separately and combining the results. The blue solid circle markers show the signal fraction from the simulation without further selection. The signal fraction increases from about 10^{-2} at $p_T = 4$ GeV/c to $5 \cdot 10^{-2}$ at $p_T = 12–15$ GeV/c. This ratio is close to what is seen in PYTHIA at the particle level. The open markers show how the signal fraction increases when applying the π^0 decay photon rejection and the isolation cut. Both selections give an improvement in the signal fraction by a factor 4–8 over the studied p_T range. The combined effect of both selection...
criteria, shown by the red square markers, results in about a factor 10 improvement in the signal fraction, bringing the signal fraction above 0.1 above $p_T = 6 \text{ GeV}/c$, and close to 0.5 at high p_T.

The expected performance in pp collisions is summarised in the right panel of Fig. 34 which quantifies the relative uncertainty on a direct photon measurement. The projections are based on a parameterisation of the expected direct and decay photon spectra from INCNLO [98] and PYTHIA8 [56]. The efficiency for background rejection and signal detection are taken to be p_T-independent, 0.04 and 0.65 respectively, based on the results in Fig. 33. At low p_T, the dominant contribution to the systematic uncertainty is the uncertainty of the subtracted background. This background comes mainly from π^0 decays. We expect that the π^0 production can be measured with a precision of around 5%, with a few percent uncertainty on the reconstruction efficiency (which is around 90%) and a few percent uncertainty due to the total energy scale uncertainty. The latter largely cancels in the decay background subtraction, which is affected by the scale uncertainty in the same way. At higher p_T, the dominant systematic uncertainty comes from the efficiency and energy scale of the reconstructed photons. In this case, the uncertainty on the efficiency is expected to be negligible, since the efficiency is close to 100%, but the energy scale uncertainty may lead to up to 5% uncertainty on the yield due to the slope of the p_T spectrum. The resulting relative uncertainty at high $p_T > 10 - 15 \text{ GeV}/c$ is 5%. At lower p_T, the uncertainties increase, reaching 20% at 6 GeV/c, or lower, depending on the direct photon production rate. This is an excellent performance for a direct photon measurement over the range of interest, with systematic uncertainties that are smaller than those from the current proton PDFs (see Fig. 12), allowing to test universality and potentially improve the proton PDFs.

5.2 Direct photon performance with full p–Pb simulations

In p–Pb collisions, a number of nucleon–nucleon collisions are superimposed, leading to a larger multiplicity in the event. This affects both the combinatorial background for the direct rejection of decay photons using the invariant mass method, as well as the isolation energy distributions. To study these effects, we use HIJING to generate p–Pb collisions. Two samples were generated: one with minimum bias events with a condition that there is a decay photon with $p_T > 5 \text{ GeV}/c$ in the fiducial acceptance of the FoCal, and one sample with only events with at least one direct photon with $p_T > 5 \text{ GeV}/c$ in the fiducial acceptance of the FoCal.

Figure 35 shows the isolation energy distribution for the two samples for photon candidate clusters with $p_T > 5 \text{ GeV}/c$ for pp (left panel) and p–Pb (right panel) collisions. As expected, the distribution from minimum bias events, which have mostly decay photons from π^0 and η mesons, have a larger typical isolation energy than the direct photon sample. Compared to the result for pp collisions there is a clear increase of the mean $E_{T,\text{iso}}$ for both direct photon and minimum bias events in p–Pb collisions, due to the larger underlying event background. For the further analysis in p–Pb collisions, a selection $E_{T,\text{iso}} < 5 \text{ GeV}/c$ has been used. This selection criterion is higher than in the pp analysis to compensate for the larger underlying event, but effectively tighter, since the increase in the underlying event energy in the minimum bias sample is close to 4 GeV.
Fig. 35: Isolation energy $E_{T,\text{iso}}$ distribution in a cone of $R = 0.4$ around clusters with $p_T > 5$ GeV/c in pp collisions at $\sqrt{s} = 14$ TeV (left panel) and p–Pb collisions at $\sqrt{s_{\text{NN}}} = 8.16$ TeV (right panel) for a simulated sample of minimum bias and direct photon collisions.

Fig. 36: (Left) Efficiency (or 1–rejection) for background clusters in minimum bias p–Pb collisions at $\sqrt{s_{\text{NN}}} = 8.16$ TeV generated with HIJING, with the invariant mass and isolation cuts. (Right) Corresponding efficiency for direct photons.
Fig. 37: (Left) Expected relative uncertainty (shown with an offset of 1) on a direct photon measurement in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 8.8$ TeV. (Right) Nuclear modification factor of isolated photons at $\sqrt{s_{\text{NN}}} = 8.8$ TeV. The black bars indicate the statistical uncertainties. The bands indicate the systematic uncertainty, mostly due to uncertainties on the efficiency and energy scale, as well as the decay photon background determination. The current EPPS16 uncertainty is indicated by the black lines.

The expected performance for a direct photon measurement in p–Pb collisions is summarised in Fig. 37, which shows the expected uncertainty on a direct photon measurement, and compares them to the expected R_{pPb}. The black bars indicate the statistical uncertainties, and the blue bands indicate systematic uncertainties. As for pp the expected uncertainty was estimated using the photon production rates from INCNLO [98] and PYTHIA8 [56]. At high p_T, the dominant systematic uncertainty comes from the efficiency and energy scale of the reconstructed photons, resulting in an uncertainty of 5% of the photon yield, mostly due to the energy scale uncertainty. At lower p_T, the uncertainties increase, due to the systematic uncertainty on the subtracted background, consisting of uncertainties on the π^0 reconstruction efficiency and yield determination, and the energy scale uncertainty, which are expected to be about 5% of the background yield. The resulting uncertainty on the direct photon yields reach about 20% at 6 GeV/c. Many of the systematic uncertainties in pp and p–Pb collisions can be expected to cancel in the ratio, when calculating the R_{pPb}. Nevertheless, we conservatively have only canceled roughly half of the uncertainties in the ratio.
5.3 Impact of direct photon performance on gluon PDF

To illustrate the impact of the FoCal measurements on the nuclear PDFs, Fig. 38 shows the effect of including a forward photon measurement from FoCal in the EPPS parameterization of the nuclear PDF for gluons. This was done with a preliminary version of the EPPS16 nuclear PDFs, labeled EPPS99 in the figure. The red dashed line represents the current uncertainty, which goes from close to 0 to about 2 times the central value, while the grey band shows the uncertainty after including the projected FoCal measurement, assuming that the measured cen-
Fig. 40: Simulated invariant mass distribution for photon pairs in 10M central Pb–Pb events with $6.0 < p_T < 8.0$ GeV/c (left panel) and $8.0 < p_T < 10.0$ GeV/c (right panel). Both background and signal are generated from a parametrisation fitted to the embedded signal sample and simulated Pb–Pb events which is scaled up to 10M central events. Statistical fluctuations are generated, but are too small to be visible in the figure.

As discussed in Sec. 2.1, the estimated uncertainties also reflect to some extent the flexibility of the parametrisations used for the nuclear modification of the PDFs. The impact of the direct photon measurements on the nuclear PDFs depends on the data used to constrain the different PDFs, and the underlying assumptions used to constrain the parameterizations in regions were no data exists. Since no data is available to constrain the nuclear PDFs at $x < 0.001$, the uncertainties before the new data are available are difficult to estimate and may currently be larger than assumed. To illustrate the combined performance of future measurements, the expected uncertainties of the gluon PDFs for the nNNPDF fit (see Fig. 2) using either pseudo-data for the EIC [32] or the FoCal (from Fig. 38) are computed, and are presented in Fig. 39. For the FoCal data, the statistical and systematic uncertainties are combined into a point-by-point uncertainty and an additional 5% normalisation uncertainty that is fully correlated point-to-point is included. As expected, the higher-energy option of the EIC will constrain the gluon PDF for x down to about $5 \cdot 10^{-3}$, while the FoCal would lead to significantly improved uncertainties even significantly below 10^{-4}. Clearly, the FoCal measurements will probe much smaller x than the existing and possible future EIC measurements, and lead to high precision results due to the excellent direct photon performance.
Fig. 41: Estimated statistical and systematic uncertainties for a π^0 production measurement in central Pb–Pb collisions (left panel) and corresponding R_{AA} measurement (right panel) for a prediction obtained from JEWEL [101].

5.4 π^0 spectra in Pb–Pb and nuclear modification factor

In Sec. 4.8, the performance of FoCal for π^0 reconstruction in Pb–Pb events was estimated, using single simulated π^0 added to fully simulated central Pb–Pb collisions. The invariant mass resolution was shown to be lower in Pb–Pb collisions than in single particle simulations (see Fig. 30), but still good, and the efficiency is around 80% at high p_T. In reality, one also expects a larger combinatorial background in the two-photon invariant mass distribution. We studied the combinatorial background in simulated Pb–Pb events and illustrate the effect by parametrising the background distribution and scaling it up to 10M central events. We then generated an invariant mass distribution from the parameterised background and signal distributions and the result is shown in Fig. 40 for $6.0 < p_T < 8.0$ GeV/c. The expected signal-to-background ratio is about 0.25, which is large enough to determine π^0 yields with a reasonable precision. In the slightly lower interval $5.0 < p_T < 7.0$ GeV/c, the signal-to-background ratio is only a few per cent, which makes it difficult to determine the signal strength.

Based on the estimates above, we have calculated the expected statistical and systematic uncertainties for a π^0 measurement in central collisions using 100M Pb–Pb events, as shown in the left panel of Fig. 41. At low p_T, the dominant contribution to the systematic uncertainties is the uncertainty on the combinatorial background in the invariant mass distribution, which is estimated to be 0.25% (of the background). At higher $p_T \gtrsim 8$ GeV/c, the systematic uncertainty on the reconstruction efficiency and p_T resolution are dominant. The combined effect of these is estimated to be about 10% on the measured yield. The right panel of Fig. 41 shows the expected performance of the nuclear modification factor, where the systematic uncertainties of the measurement in Pb–Pb and pp were conservatively assumed to be independent.
6 Detector design and beam test results

The proposed FoCal detector consists of an electromagnetic calorimeter FoCal-E, using a Si-W design with pad and pixel layers and a hadronic calorimeter FoCal-H, with a more conventional metal-scintillator sampling technology.

In the past years, several prototypes have been designed and built to validate the detector concept, in particular the use of digital pixel readout to measure shower energy, and to test technologies for the pad layers. In the following we will describe the design and layout of the detector layers and the technology choices for the pad and pixel layers. Besides the prototypes that will be mentioned below a proton computer tomography prototype for clinical application based on proton tracking with a high-granularity (pixel based) digital tracking calorimeter is being constructed by members of the FoCal collaboration [102].

Fig. 42: Schematic view of a single FoCal-E module, containing 20 layers of W converter and Si sensors. 18 of the layers consist of pad sensors, while 2 layers use pixel sensors.

6.1 FoCal-E module design and integration

A schematic view of an individual FoCal-E module is shown in Fig. [42]. The modules consist of 20 converter/detection layers. Out of these, 18 layers contain 3 pad sensors, of 9×8 cm2 each. Two layers, the fifth and the tenth, will be replaced by a MAPS layer each, consisting of 9×6 ALPIDE pixel sensor chips. The total sensitive area of the module will be approximately 27×8 cm2. All connections for readout, bias voltage, power and cooling are routed to one side, so that two rows of these modules can be stacked side-by-side. A thickness of $1X_0$ per layer leads to a total depth of 20 radiation lengths.

This design allows for a compact stacking of the FoCal elements, to achieve a nearly gapless detector. The dead areas between modules are expected to be a few mm on each side. Routing of readout, services and cooling needs to be carefully designed, but is not expected to be problematic since the detector size is reasonably small.
6.2 FoCal-E Pad layers and prototype tests

The pad layers will be built up from silicon pad sensors with a granularity of $1 \times 1 \text{ cm}^2$. Using 6 inch wafers, we can obtain a sensitive area of $9 \times 8 \text{ cm}$ for each sensor, which is a good match to the pixel sensor geometry (see next section). The analog signals from the pad sensors will be read out by a charge sensitive amplifier-shaper and digitized to ship the data on a standard digital connection (GBTX).

One of the important design considerations is the dynamic range: in the forward direction, we would like to be able to detect showers with energies of up to 2 TeV ($p_T = 16 \text{ GeV}/c$ at $\eta = 5.5$), but also measure MIP signals for calibration purposes. The corresponding charge signals range from a few fC to a few pC. At high p_T, we expect to be able to reach an energy resolution of about a percent for showers (a few percent per pad), which implies a total dynamic range of about 10^5. Such a large dynamic range and high precision can only be reached with a dual-range readout.

For the read-out, an ASIC that combines the amplifier-shaper with an ADC and digital circuits to handle the shipping of the data will be used. The following options are under consideration:

- The HGCROC chip that is being developed by CMS for the HGCAL [103]. The HGCROC has dual-range readout with an ADC for the signals up to 100 MIP, which is used for MIP calibration and cross-calibration and a time-over-threshold measurement which provides the amplitude measurement for large signals. HGCROC samples the signals at the LHC frequency of 40 MHz and sends out signals above a threshold. With this option, we expect that a simple readout scheme shipping all the hits to FLP nodes is sufficient. The data can then be matched with interaction triggers and data from the other detectors in ALICE in the EPNs [104].

- The SAMPA [105] chip is a charge sensitive amplifier-shaper with a 10-bit ADC and signal processing capabilities that were designed for the TPC and MUON arm in ALICE. The input capacitance matches the pad readout and the linearity and resolution of the readout are expected to be sufficient for the FoCal-E. The dynamic range for the charge readout is around 500 fC for the full range; a dual-range read-out is needed to increase the dynamic range. A passive charge division circuit is being developed and tested. The peak time of the analog stage is 300 ns, and a new version with 80 ns peak time is under development for sPHENIX. The SAMPA can digitize signals with a 10 MHz rate and has a self-triggered mode.

- The VMM [106] chip is similar to the SAMPA chip, but has a configurable dynamic range and a shorter shaping time, i.e. a larger potential readout rate. To reach the required dynamic range and resolution, VMM also needs a dual range readout with a charge divider.

- The ANUINDRA [107] is a charge sensitive amplifier which has a dynamic range of 2.5 pC and a peak time of 1.2 μs. The dynamic range of this circuit is close to what is needed for the FoCal, but further design work is needed to add a large dynamic range digital
readout (dual range ADC, or ADC and Time-over-Threshold measurement) circuit and
and a digital interface. The shaping time can be reduced for operation at 1 MHz.

The final choice will be made depending on performance and overall integration into the sys-

The prototype detectors from VECC and BARC were tested with different Charge Sensitive Am-
plifier chips, including the MANAS [108] chip that was developed for the muon arm detectors
in ALICE. Further development is ongoing with the ANUINDRA ASIC which has a larger dy-
amic range and shorter shaping time. The readout of the prototype of the groups from Tsukuba
in Japan is based on the APV25 [109] chip as Charge Sensitive Amplifier. Both sets of proto-
types showed satisfactory performance in the test beams with beams up to 250 GeV, and have
provided valuable experience towards the design of the FoCal.

Figure 44 shows some key results of the electron test beam at the SPS for the Si+W pad technol-
ogy. The layers are read out individually, making it possible to measure the longitudinal shower
profiles as shown in the left panel. The position of the shower moves further into the detector
Fig. 44: (Left) Longitudinal shower profiles measured with the prototype Si+W pad calorimeter detector for different electron beam energies of the SPS test beam. (Right) Energy resolution as a function of incident energy.

with increasing beam energy. The right panel shows the energy resolution as a function of energy which is fitted with a parameterisation with a stochastic and constant term. The prefactor of the stochastic $1/\sqrt{E}$ term is found to be $b = 0.17 \pm 0.03 \sqrt{\text{GeV}}$ which agrees well with simulations. The constant term is found to be $1.9 \pm 0.5\%$, which is slightly larger than expected from simulation, but more than sufficient for the physics program. To obtain this resolution, the incoming beam particles have been constrained to a narrow region in the prototype. Further studies are being done to fully understand the performance. Note, that the two data points at the highest energies show a slightly different trend than suggested by the fit — this is understood to be due to saturation in the readout electronics used in the beam test. Further details on the test beam analysis can be found in [110] and in a forthcoming publication, which will include also a more recent analysis.

A larger scale prototype was built by the Japanese groups using pad sensors from Hamamatsu and APV25 hybrid boards as a charge sensitive preamplifier with the SRS system. A total of 20 layers with each 3 silicon pad sensor planes with 8×8 pads were produced. This prototype is referred to as the “mini FoCal”. It was tested in test beam, but also in the ALICE cavern at about 7.62 m from the interaction point on the A-side, in front of the ZEM detector, during the pp 13 TeV physics data taking in 2018. The goal of these tests was to demonstrate that the detector works in the ALICE environment and to measure the backgrounds for the FoCal near the beam.

Figure 45 shows the mini FoCal in the left panel and the uncorrected energy distribution of clusters in the right panel. The mini FoCal in this location covers the rapidity range 3.7–4.5. The cluster energy distributions were fitted with a power law, and the spectra become harder (power law exponent n decreases) with increasing rapidity as expected.
For the pixel layers (see Fig. 46), the ALPIDE sensor that has been developed for the ALICE ITS will be used [93]. The power density is such that the sensor requires cooling, which can be implemented by mounting the chips on aluminium plates with a small cooling channel inside. The chips can be connected by thin aluminium-on-kapton cables into “strings” or “ladders” of up to 9 chips. A module consists of two plates mounted back-to-back with 3 of such strings each, for a total of 6 (3 front and 3 on the back), giving a total sensitive area of 270.8×82.26 mm2, which is compatible with the pad sensors dimensions listed above.

The ALPIDE sensor is designed for use in a relatively low occupancy tracking environment. Tests were performed to evaluate the ALPIDE performance at large occupancy as present in electromagnetic showers. Test beam results and first SystemC [111] simulations show that the ALPIDE can handle the expected occupancy with an average busy rate of below 3%. For the readout and powering of the ALPIDE sensors, a system that is derived from the ITS readout and power system is foreseen.
Fig. 47: Lateral profile of electrons showers with an energy of 100 GeV. The different colors show the profile in different layers. Each layer is about 1 radiation length.

To test the Si-W technology with pixel readout, a small prototype was built with a full pixel readout. The main goals of the test were to determine the energy resolution of a calorimeter with full digital readout and to confirm the shower simulations in GEANT which are the basis of our performance simulations and the two-shower separation capabilities.

Some examples of the measured lateral profile are shown in Fig. 47. It can be seen in the figure that the shower profile is very narrow in the first few layers (each layer is about 1 radiation length) and becomes gradually broader as the shower develops. Most of the energy is contained within a few mm from the shower axis, which makes it possible to disentangle showers with a small separation. The conceptual design of FoCal-E uses pixel readout for layer 5 and 10. A more detailed description of the test beam data analysis can be found in [112].

The linearity and energy resolution of the pixel prototype detector are illustrated in Fig. 48. The left panel shows the energy response measured with test beams with electron energies $E = 5.4$ to 244 GeV (red points) and calculated in simulations (blue points). The lower panel shows the difference between the obtained results and a linear fit. The deviations from linearity are below 2% over the full range.

The right panel of Fig. 48 shows the energy resolution as a function of energy, comparing the test beam results (red points) to simulations (blue points). The solid blue points show the simulated response of the detector as built, where about 16% of the sensors are not active for various reasons. The open blue points show the expected response for a detector where all sensors are operational. The energy resolution measured with test beams is not as good as the expected result.
Fig. 48: The linearity (left) and energy resolution (right panel) of the full pixel prototype detector. The results are corrected for dead areas and sensor-to-sensor variations of the sensitivity.

Fig. 49: Different projections of a single-event measurement (hit pixels) of two electrons of $E = 5.4$ GeV from a test beam in the pixel prototype. The left panel shows the transverse distribution summing longitudinally over all layers, the right panel shows a side view of the same event. The hits that are within 15 mm of either of the two shower centers are colored in blue and red; the black points indicate hits that are further from the shower center.

from simulations. This small difference is not yet fully understood, but may have to do with local variations in the response, as well as lateral shower leakage. The measured energy resolution is however sufficient for the intended physics program. Moreover, in the FoCal-E detector design, the pixel layers are used to separate close photon pairs, while the energy resolution is mostly
provided by the pad layers with analog readout.

6.4 FoCal-E density, Molière radius and two-photon separation

One of the key features of the FoCal-E design with high-granularity pixel layers is the excellent two-shower separation for π^0 identification. The choice of tungsten as converter material is driven by this consideration: tungsten has a Molière radius $R_M = 0.9$ cm, i.e. very compact showers. In fact, the shower profiles in Fig. 47 clearly show that the shower core is much narrower than the Molière radius and therefore two-shower separation is possible at distances of a few mm, much less than the Molière radius. This is also illustrated in the Fig. 49 which shows a single-event display for a measurement of two electron showers in the prototype, and is confirmed in our detailed simulation studies reported in Sec. 4.

In the pixel prototype design, all efforts aim to minimise the distance between the tungsten layers to keep the overall Molière radius of the detector small. In the prototype detector, the distance between the tungsten layers was only 0.5 mm, which was possible because the readout signals are digital and no supporting electronics is needed inside the detector volume. For the full module design, some decoupling capacitors etc. will need to be mounted inside the detector volume. For the pad layer, a more complex structure is foreseen, with a sandwich of silicon sensor, (thin) PCB and the readout ASICs all being placed inside the detector volume, leading to a larger distance between the tungsten layers.

The impact of the interlayer distance was studied in simulations using the FoCal-E detector model that is described in Section 4.1. It was found that the effect of a larger interlayer distance on the shower size in the pixel layers which are used for two-shower separation is small. This is illustrated in the Fig. 50 which shows the lateral shower profiles in the pixel layers for the ideal situation with a minimum interlayer distance of 2.1 mm, a more realistic design with 6.6

![Graph showing lateral shower profiles](image)

Fig. 50: Lateral profiles of simulated showers of 500 GeV photons in the first and second pixel layer, for two different situations: minimal distance of 2.1 mm between the converter layers and a more realistic distance of 6.6 mm.
mm distance. In later layers, the shower widths increase more, but the effect remains small if the sensors are mounted directly behind the tungsten converter layer. Moving the sensors within the inter-layer space can result in a stronger broadening, but only at larger depth in the calorimeter.

![Graph](image)

Fig. 51: Reconstruction efficiency for π^0 as a function of p_T for two different interlayer distances: minimal distance of 2.1 mm and a more realistic distance of 6.6 mm between the tungsten converter layers.

The efficiency for π^0 reconstruction with the ideal design and the more realistic interlayer distance is compared in Fig. [51]. The conclusion of these studies is that a good two-shower separation can be achieved even with a relatively large distance between the tungsten converter layers.

6.5 Readout, trigger and data rates

The FoCal readout scheme will be compatible with the continuous readout scheme of ALICE [104]. For the pixel layers, the readout system will be based on the system that has been designed for the ITS, using continuous readout in pp, p–Pb and Pb–Pb collisions. The integration time of the pixels is about 5 μs, which means that there will be some pile-up during pp and p–Pb operation, where a collision rate of 1 MHz is foreseen. Given the low overall occupancy in those events, the pile-up can be disentangled using information from the pad layers, which have a better time resolution. For example, the HGCROC provides a digitised signal in every bunch crossing, thanks to its fast shaper with a peaking time of around 20 ns. By matching reconstructed clusters/showers in the pixel layers to those in the pad layers, the signals can be assigned to the correct bunch crossing. Zero-suppressed signals are shipped on standard (LP-)GBTX links and further processing is done on the EPN farm.

A rough estimate of the total data rates to the FLP has been made, assuming zero-suppressed data. The total data rate from the pad layers is expected to be around 100 Gbit/s, while the
pixel layers produce around 200 Gbit/s. The data rates for pp, p–Pb and Pb–Pb data are within a factor 2 from each other. However, there is large variation of data rates as a function of position: the detector elements close to the beam have a much larger occupancy and data rate than those further away. Solutions involving data aggregation/buffering per module or near the detector will be investigated as a way to reduce the total cost of the GBTX links.

A first level of processing and filtering will be implemented in the EPN farm to achieve data reduction. For example, for the pixel layers, the data can be summed into “macro-pixels” following a similar scheme as implemented in the current simulation and cluster finder. Thus, areas containing about 100 pixels and be combined into a single 7-bit amplitude. For the pad layers, longitudinal summing of the signals over part of the depth of the calorimeter can be used to significantly reduce the data rates.

6.6 Radiation load

![Fig. 52: Neutron flux (arbitrary units) in FoCal as a function of layer number and radial position. One layer corresponds to a thickness of approximately $1 X_0$ in the z direction.](image)

In high radiation environments such as the LHC, silicon sensors are potentially susceptible to radiation damage. The radiation load on the sensor layers of the FoCal as implemented for the performance studies was evaluated in MC simulations. The simulations were carried out with Fluka and GEANT4 simulations, which have been validated for this purpose.

As an example, Fig. 52 shows the neutron flux as a function of detector layer and radial position. Clearly, the flux is maximal towards the rear of the detector, and is particularly high for the innermost part. For the remaining studies we will in particular look at the radiation in the region $8 \text{ cm} < R < 20 \text{ cm}$. The dose estimates have been done for a running scenario including integrated luminosities of 10nb^{-1} of Pb–Pb, 50nb^{-1} of p–Pb, and 6 pb^{-1} of pp collisions.

Fig. 53 shows the integrated doses collected by the sensors in the FoCal as a function of the layer number. The left panel shows the Total Ionisation Dose (TID). The red histogram shows the results from GEANT4 calculations, while the blue those from Fluka. The two curves are significantly different, GEANT4 predicts a much higher dose than Fluka. For both simulations
the maximum dose is rather deposited early in the detector, with a distinct maximum around layers 7 – 8 for the GEANT4 results. To be conservative we use the high estimate for our purpose, the maximum dose corresponds to TID = 180 krad. The right panel shows the dose as quantified by the 1 MeV neutron equivalent fluence (NEQ). These numbers are continuously increasing with depth. Again the results of GEANT4 and Fluka are significantly different, this time, however, Fluka predicts larger numbers. The maximum value corresponds to $NEQ = 1.15 \times 10^{12} \text{ cm}^{-2}$. While these numbers are high, they are well within the expected tolerance for the sensors. Estimates from the tests of the CMOS sensors to be used in the ALICE ITS upgrade, give radiation tolerances of TID ≈ 1 Mrad and NEQ $\approx 10^{13} \text{ cm}^{-2}$.

6.7 FoCal-H design

The FoCal-H is a sampling hadronic calorimeter designed to mount behind FoCal-E and provide photon isolation by direct detection of high energy hadrons lying close to the trajectory of the candidate direct photon. In addition, the detector will provide a direct measure of jet production in the same phase space in which the FoCal-E will provide direct photon measurements.

For the above applications and limited to the forward rapidity region occupied by the FoCal, we are interested in very high energy hadrons where the constant term in the calorimeter response will dominate. In such a detector, the constant term is driven by the Electromagnetic to Hadronic (EM/HAD) fluctuations in the hadronic shower. Several absorber materials are being considered, including Cu, Pb and Fe. Pb has been shown in theoretical calculations by Wigmans [113] and confirmed by experimental studies by Bernardi et al. [114] and subsequently in a large prototype by the SPACAL collaboration [115] to allow reasonable EM/HAD compensation and good hadron resolution through the selection of the correct Pb to scintillator volume ratio. Thus, at the high energies relevant for FoCal, a properly designed Pb/scintillator sampling calorimeter is expected to yield a good hadron performance.

One possible implementation of the FoCal-H is a Pb/scintillating fiber spaghetti calorimeter using technology first prototyped by the SPACAL Collaboration [115] and later utilized in a first large-scale application in AGS E864 [116]. This detector has excellent hadronic resolution and
Fig. 54: An end view of the Pb/scintillating fiber sampling hadronic calorimeter module with front face dimensions 10 cm × 10 cm. The scintillating fiber density shown here (accounting for glue) corresponds to a Pb to scintillator ratio of 4.55 : 1 by volume. All dimensions are in cm.

Fig. 55: A conceptual arrangement of the Focal-H modules. A total of 372 modules are illustrated allowing 1488 towers of 5 cm × 5 cm in a nearly circular geometry approximately 1 m in radius.

good compensation. In AGS E864, however, each module was configured as a single 10 cm × 10 cm tower. However, with 4 light collector/diffusers, each module then provides 4 separate, optically isolated towers of 5 cm × 5 cm. In the innermost part of the calorimeter, a further subdivision to towers of 2.5 cm × 2.5 cm is foreseen to accommodate cone sizes of $R = 0.4$ up to the highest pseudorapidities. A configuration of 4 towers per 10 cm × 10 cm module was successfully used in the FermiLab Tevatron MiniMax experiment\(^5\). Figure 54 shows the end view of a 10 cm × 10 cm module as used in E864. Because every scintillating fiber is optically

\(^5\)See https://www-minimax.fnal.gov/
isolated from its neighbors, the tower geometry within a given module is completely defined within some reasonable geometric restriction, namely by how many fibers are grouped together to a single light collector/diffuser leading to a single photo-sensor. The scintillating fiber density, accounting for glue layer that holds the module together, corresponds to a Pb to scintillator ratio of 4.55:1 by volume. This is the value found to be the optimum by the SPACAL collaboration and confirmed at low energies in test beam studies by the E864 collaboration.

As noted above, the towers have a lead to fiber ratio of 4.55:1 by volume similar to that used in the SPACAL prototype. Based on measurements in the literature, this is expected to provide good calorimetric compensation and resolution. Given the module parameters to be adopted for FoCal, the average tower density is 9.6 g/cm3. The effective radiation length (X_0) is 7.8 mm. The nuclear interaction length (λ_{had}) and the Moliere radius (R_{M}) are 19.7 cm and 2.2 cm, respectively.

A module will have a mass of about 100 kg and an active depth of approximately 8 λ_{had}. Figure 55 shows a module stacking geometry that utilizes 372 modules producing 1488 towers. The configuration is approximately circular, 1 meter in radius, and has a total mass of approximately 40 metric tons. This is too heavy for the ALICE mini-frame. Appropriate support structures will have to be installed to hold this weight.

Compared to Pb, Cu has about a 20% shorter interaction length, and about 20% lower density, which would roughly lead to 20% shorter and lighter modules. At the same time it is almost a factor 2 less diamagnetic, which due to the proximity to the LHC compensator magnet may be beneficial. In the simulations, we have for the moment hence used Cu as the passive material. However, practical considerations as cost and complexity in the manufacturing process will in the end have to be taken into account as well.
Table 1: List of institutes taking part or interested in the FoCal project. Todo: This list is being updated based on ongoing discussions throughout the LOI approval process.

<table>
<thead>
<tr>
<th>Short Name</th>
<th>Full Name</th>
<th>Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARC</td>
<td>Bhaba Atomic Research Centre, Mumbai, India</td>
<td>V.B. Chandratre</td>
</tr>
<tr>
<td>Berkeley</td>
<td>Lawrence Berkeley National Laboratory, Berkeley, USA</td>
<td>M. Ploskon</td>
</tr>
<tr>
<td>Bhubaneswar</td>
<td>Institute of Physics, Bhubaneswar, India</td>
<td>P. K. Sahu</td>
</tr>
<tr>
<td>Bergen</td>
<td>University of Bergen, Bergen, Norway</td>
<td>D. Roehrich</td>
</tr>
<tr>
<td>Bose</td>
<td>Bose Institute, Kolkata, India</td>
<td>S. Das</td>
</tr>
<tr>
<td>CCNU</td>
<td>Central China Normal University</td>
<td>D. Zhou</td>
</tr>
<tr>
<td>Detroit</td>
<td>Wayne State University, Detroit, USA</td>
<td>J. Putschke</td>
</tr>
<tr>
<td>Gauhati</td>
<td>Gauhati University, India</td>
<td>B. Bhattacharjee</td>
</tr>
<tr>
<td>Grenoble</td>
<td>LSPC Grenoble, France</td>
<td>R. Guermane</td>
</tr>
<tr>
<td>Houston</td>
<td>University of Houston, Houston, USA</td>
<td>R. Bellwied</td>
</tr>
<tr>
<td>Hiroshima</td>
<td>Hiroshima University, Hiroshima, Japan</td>
<td>T. Sugitate</td>
</tr>
<tr>
<td>IITB</td>
<td>Indian Institute of Technology Bombay, Mumbai, India</td>
<td>R. Varma</td>
</tr>
<tr>
<td>Indore</td>
<td>Indian Institute of Technology Bombay, Indore, India</td>
<td>R. Sahoo</td>
</tr>
<tr>
<td>Jammu</td>
<td>Jammu University, Jammu, India</td>
<td>A. Bhasin</td>
</tr>
<tr>
<td>Jyväskylä</td>
<td>University of Jyväskylä, Jyväskylä, Finland</td>
<td>TBD</td>
</tr>
<tr>
<td>Knoxville</td>
<td>University of Tennessee, Knoxville, USA</td>
<td>K. Read</td>
</tr>
<tr>
<td>Nagasaki</td>
<td>Nagasaki Inst. of Applied Science, Nagasaki, Japan</td>
<td>K. Oyama</td>
</tr>
<tr>
<td>Nara</td>
<td>Nara Women’s University, Nara, Japan</td>
<td>M. Shimomura</td>
</tr>
<tr>
<td>NBI</td>
<td>Niels Bohr Institute, Copenhagen, Denmark</td>
<td>I. Bearden</td>
</tr>
<tr>
<td>NISER</td>
<td>National Institute of Science Education and Research (NISER)</td>
<td>B. Mohanty</td>
</tr>
<tr>
<td>Oak Ridge</td>
<td>Oak Ridge National Laboratory (ORNL), Oak Ridge, USA</td>
<td>C. Loizides</td>
</tr>
<tr>
<td>Panjab</td>
<td>Panjab University, Chandigarh, India</td>
<td>L. Kumar</td>
</tr>
<tr>
<td>Sao Paulo</td>
<td>Universidade de Sao Paulo (USP), Sao Paulo, Brazil</td>
<td>M. Munhoz</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Center of Nuclear Study (CNS), Tokyo, Japan</td>
<td>T. Gunji</td>
</tr>
<tr>
<td>Tsukuba</td>
<td>University of Tsukuba</td>
<td>T. Chujo</td>
</tr>
<tr>
<td>Tsukuba Tech</td>
<td>Tsukuba University of Technology</td>
<td>M. Inaba</td>
</tr>
<tr>
<td>UU/Nikhef</td>
<td>Utrecht University, Utrecht, and Nikhef, Amsterdam, Netherlands</td>
<td>T. Peitzmann</td>
</tr>
<tr>
<td>VECC</td>
<td>Variable Energy Cyclotron Centre, Kolkata, India</td>
<td>S. Chattopadhyay</td>
</tr>
</tbody>
</table>

7 Project organisation, costs and timelines

7.1 Project Management and Organisation

The ALICE Forward Calorimeter Project, in short FoCal, may become a proposed upgrade for the ALICE experiment. In case it will be approved it will be organized according to the ALICE Collaboration rules and constitution.

7.2 Participating institutes

Table 1 lists the institutes that are currently active in or expressed an interest to contribute to the FoCal project, and Table 2 lists preliminary or possible institutional responsibilities and contribu-
Table 2: Preliminary list of institutional responsibilities and intended contributions.

<table>
<thead>
<tr>
<th>Project component</th>
<th>Participating Institution(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoCal-E</td>
<td></td>
</tr>
<tr>
<td>pixel sensors</td>
<td>Bergen, Berkeley, CCNU</td>
</tr>
<tr>
<td>pixel modules</td>
<td>Berkeley, Oak Ridge</td>
</tr>
<tr>
<td>pixel readout</td>
<td>Bergen, Oak Ridge</td>
</tr>
<tr>
<td>pad sensors</td>
<td>Kolkata, Mumbai, Oak Ridge, Tsukuba, Tsukuba Tech</td>
</tr>
<tr>
<td>pad readout</td>
<td>Grenoble, Kolkata, Mumbai, Oak Ridge, São Paolo, Tsukuba, Tsukuba Tech</td>
</tr>
<tr>
<td>pad modules</td>
<td>Kolkata, Mumbai, Oak Ridge, Tsukuba, Tsukuba Tech</td>
</tr>
<tr>
<td>integration</td>
<td>Knoxville, Oak Ridge, Tsukuba, Tsukuba Tech</td>
</tr>
<tr>
<td>FoCal-H</td>
<td></td>
</tr>
<tr>
<td>mechanics</td>
<td>Detroit, Knoxville, Oak Ridge</td>
</tr>
<tr>
<td>photosensors</td>
<td>Detroit, Houston, Knoxville, Oak Ridge</td>
</tr>
<tr>
<td>readout</td>
<td>Detroit, Knoxville, Oak Ridge</td>
</tr>
<tr>
<td>slow control</td>
<td>Detroit, Houston, Jammu</td>
</tr>
<tr>
<td>integration</td>
<td>Detroit, Knoxville, Oak Ridge</td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>simulation, software</td>
<td>NISER, Nagasaki, Nara, UU/Nikhef</td>
</tr>
</tbody>
</table>

7.3 Cost estimates

The cost estimate for FoCal-E is summarized in Tab. 3. The cost estimate for a detector of an outer radius of $r = 0.6$ m is based on present quotations obtained from industrial vendors and on the already purchased material. Only items which are exclusive to the FoCal are included in the table, while the modification to beam pipe or support structure, as well as items common to all ALICE sub-detector (DAQ, offline, etc.) are not included. Table 4 shows similar cost estimates for FoCal-H. The estimated total costs are ≈ 9 MCHF for the FoCal-E and ≈ 2 MCHF for FoCal-H. Reducing the outer size to $r = 0.45$ m (i.e. restricting the acceptance to about $\eta = 3.4$ which may need to be considered for space restrictions) would reduce the projected costs for FoCal-E by about 1.5MCHF.
Table 3: Preliminary cost estimate for FoCal-E, including the detector itself, electronics, infrastructure and installation. Only direct costs are given, no engineering/design costs are included.

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost (kCHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tungsten</td>
<td>500</td>
</tr>
<tr>
<td>unit mechanics</td>
<td>500</td>
</tr>
<tr>
<td>silicon sensors (pads)</td>
<td>3800</td>
</tr>
<tr>
<td>pad power and readout</td>
<td>800</td>
</tr>
<tr>
<td>ALPIDE</td>
<td>600</td>
</tr>
<tr>
<td>ALPIDE power and readout</td>
<td>800</td>
</tr>
<tr>
<td>cables and connections</td>
<td>200</td>
</tr>
<tr>
<td>support + integration</td>
<td>1200</td>
</tr>
<tr>
<td>cooling</td>
<td>600</td>
</tr>
<tr>
<td>total detector cost</td>
<td>9000</td>
</tr>
</tbody>
</table>

Table 4: Preliminary cost estimate for FoCal-H, including the detector itself, electronics, infrastructure and installation, but without support structure. Only direct costs are given, no engineering/design costs are included.

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost (kCHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb plates</td>
<td>700</td>
</tr>
<tr>
<td>scint. Fibers + Diffuser</td>
<td>280</td>
</tr>
<tr>
<td>tools</td>
<td>140</td>
</tr>
<tr>
<td>APD + accessories</td>
<td>130</td>
</tr>
<tr>
<td>LED system + CR calibration</td>
<td>130</td>
</tr>
<tr>
<td>misc. electronics</td>
<td>100</td>
</tr>
<tr>
<td>packing/shipping</td>
<td>120</td>
</tr>
<tr>
<td>integration</td>
<td>350</td>
</tr>
<tr>
<td>total detector cost</td>
<td>1950</td>
</tr>
</tbody>
</table>
Table 5: Definition and description of the different components for pad, pixel layers of FoCal-E and the hadronic calorimeter as well as general tasks.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pad01</td>
<td>sensor specification</td>
</tr>
<tr>
<td>Pad02</td>
<td>readout board design (and connection)</td>
</tr>
<tr>
<td>Pad03</td>
<td>module mechanical design and cooling</td>
</tr>
<tr>
<td>Pad04</td>
<td>LV power infrastructure</td>
</tr>
<tr>
<td>Pad05</td>
<td>HV for sensors</td>
</tr>
<tr>
<td>Pad06</td>
<td>QA performance, components and system tests</td>
</tr>
<tr>
<td>Pad07</td>
<td>FLP/EPN connections and software</td>
</tr>
<tr>
<td>Pad08</td>
<td>DCS/controls</td>
</tr>
<tr>
<td>Pix01</td>
<td>sensor specification</td>
</tr>
<tr>
<td>Pix02</td>
<td>readout board design (and connection)</td>
</tr>
<tr>
<td>Pix03</td>
<td>module mechanical design and cooling</td>
</tr>
<tr>
<td>Pix04</td>
<td>LV power infrastructure</td>
</tr>
<tr>
<td>Pix05</td>
<td>QA performance, components and system tests</td>
</tr>
<tr>
<td>Pix06</td>
<td>FLP/EPN connections and software</td>
</tr>
<tr>
<td>Pix07</td>
<td>DCS/controls</td>
</tr>
<tr>
<td>Hcal01</td>
<td>tower design (granularity, arrangement of fibers, scintillators)</td>
</tr>
<tr>
<td>Hcal02</td>
<td>readout electronics design (APVs, (multi-anode?) PMTs, SiPMs ?)</td>
</tr>
<tr>
<td>Hcal03</td>
<td>LV power infrastructure</td>
</tr>
<tr>
<td>Hcal04</td>
<td>HV infrastructure</td>
</tr>
<tr>
<td>Hcal05</td>
<td>QA, performance, component and system tests</td>
</tr>
<tr>
<td>Hcal06</td>
<td>FLP/EPN connections and software (i.e. DAQ)</td>
</tr>
<tr>
<td>Hcal07</td>
<td>DCS/controls</td>
</tr>
<tr>
<td>Gen01</td>
<td>Mechanical design and integration of PAD and PIXEL</td>
</tr>
<tr>
<td>Gen02</td>
<td>Support structure (FoCal-E and H)</td>
</tr>
<tr>
<td>Gen03</td>
<td>FIT integration/adaptation</td>
</tr>
<tr>
<td>Gen04</td>
<td>Cooling</td>
</tr>
<tr>
<td>Gen05</td>
<td>Beam pipe</td>
</tr>
<tr>
<td>Gen06</td>
<td>Detector controls</td>
</tr>
<tr>
<td>Gen07</td>
<td>Timing/synchronisation of pad and pixel and HCAL; trigger</td>
</tr>
<tr>
<td>Gen08</td>
<td>Calibration, test beam</td>
</tr>
<tr>
<td>Gen09</td>
<td>Offline software (simulation, reconstruction; O2)</td>
</tr>
</tbody>
</table>

7.4 Design and construction activities and schedule

An overview of the list of components and tasks needed to construct the FoCal is given in Tab.5. The test beam and design and prototyping activities that have taken place in the past years have been described in Sections 6.2 and 6.3. Currently, several important steps for the final design are being pursued in parallel. For the pixel layers, prototypes of the chip cables that connect 9 ALPIDE chips into a ‘string’ are being designed and built; tests with smaller setups and readout are also performed. For the pad layers, test boards with all three candidate readout ASICs have
been acquired and bench test are carried out in 2019 to characterise the chips and gain experience with their operation. At the same time, a test production of pad sensors from an Indian vendor will be done.

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016–2021</td>
<td>R&D</td>
</tr>
<tr>
<td>2019</td>
<td>Letter of Intent</td>
</tr>
<tr>
<td>2020–2021</td>
<td>final design</td>
</tr>
<tr>
<td></td>
<td>Technical Design Report</td>
</tr>
<tr>
<td>2022–2026</td>
<td>Construction and Installation</td>
</tr>
<tr>
<td>2022 - 2024</td>
<td>production, construction and test of detector modules</td>
</tr>
<tr>
<td>2024</td>
<td>pre-assembly</td>
</tr>
<tr>
<td></td>
<td>calibration with test beam</td>
</tr>
<tr>
<td>2025</td>
<td>installation and commissioning</td>
</tr>
<tr>
<td>06/2026</td>
<td>Start of Run 4</td>
</tr>
</tbody>
</table>

Based on the outcome of these activities, the design process for the FoCal-E modules can start in the autumn of 2019, leading to a close-to-final design for the most important parts in 2020. Prototype boards for the pad readout will also need to be produced and tested in 2020, in order to have a final design ready by 2021. A full scale module will be constructed and tested in test beam to verify key properties like the energy and position resolution, shower widths and two-shower separation capabilities and dynamic range. This should take place in 2021, to allow for final adjustments of then design before production starts in 2022. Modules will be produced gradually in 2022, 2023 and 2024. A significant fraction of the produced modules will be calibrated using a test beam in 2025. Further intercalibration of the modules can be done with charge injection in the pads or front end electronics and with MIP signals and the π^0 peak positions after installation. Installation and commissioning is foreseen for 2025, and first collisions are expected in the second half of 2026. A summary of the rough design and construction schedule is presented in Tab. 6. A detailed list of milestones and timeline to realize the final prototype tests and the writeup of the technical design report by end of 2021 is given in Tab. 7.
Table 7: Table of milestones for the various components; each to be achieved by end of the listed target period. This timeline aims to have a prototype module [PM] available for beam test in Q2/21, before finalising the TDR in Q3/21. The prototype module will have 1 or 2 full pad towers (18 sensors each) and two pixel planes. A few HCAL prototype modules should be tested at the same time. One or more full pad planes may also need to be constructed for integrations tests for noise and cooling.

<table>
<thead>
<tr>
<th>Target</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1/20</td>
<td>Pad01</td>
<td>Test sample India</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Pad01</td>
<td>India prototypes qualification</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pad02</td>
<td>pilot productions pads Japan+India [PM]</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Pad02</td>
<td>prototype boards for qualification (few boards)</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pad02</td>
<td>prototype 2 for testbeam (20-40 boards) [PM]</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pad02</td>
<td>firmware for readout [PM]</td>
</tr>
<tr>
<td>Q1/20</td>
<td>Pad03</td>
<td>conceptual design mechanics and cooling</td>
</tr>
<tr>
<td>Q3/20</td>
<td>Pad03</td>
<td>cooling tests for readout board</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pad03</td>
<td>materials for PM available</td>
</tr>
<tr>
<td>Q3/20</td>
<td>Pad04</td>
<td>LV prototype qualification for PM</td>
</tr>
<tr>
<td>Q3/21</td>
<td>Pad05</td>
<td>HV prototype qualification for PM</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pad06</td>
<td>readout receiver/FLP prototype</td>
</tr>
<tr>
<td>Q1/20</td>
<td>Pix01</td>
<td>ALPIDE data rate validation</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Pix02</td>
<td>readout board concept</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pix03</td>
<td>readout board prototype [PM] (poss. use ITS RCU)</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Pix03</td>
<td>full length cooling test</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Pix03</td>
<td>concept mechanical design and cooling</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pix04</td>
<td>prototype layers for PM (full layers)</td>
</tr>
<tr>
<td>Q3/21</td>
<td>Pix04</td>
<td>LV power infrastructure concept design</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Pix06</td>
<td>readout receiver/FLP prototype</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Hcal01</td>
<td>concept tower design (granularity, arrangement of fibers, scintillators)</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Hcal02</td>
<td>prototype tower</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Hcal02</td>
<td>concept readout</td>
</tr>
<tr>
<td>Q4/20</td>
<td>Hcal02</td>
<td>prototype readout</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Gen01</td>
<td>concept mechanical design and integration of PAD and PIXEL</td>
</tr>
<tr>
<td>Q3/21</td>
<td>Gen02</td>
<td>support structure concept</td>
</tr>
<tr>
<td>Q3/21</td>
<td>Gen03</td>
<td>concept FIT integration/adaptation</td>
</tr>
<tr>
<td>Q3/21</td>
<td>Gen05</td>
<td>beam pipe concept</td>
</tr>
<tr>
<td>Q2/20</td>
<td>Gen07</td>
<td>concept timing/synchronisation of pad and pixel</td>
</tr>
<tr>
<td>Q1/21</td>
<td>Gen08</td>
<td>PM assembly and bench tests</td>
</tr>
<tr>
<td>Q2/21</td>
<td>Gen09</td>
<td>test beam with prototype modules (FoCal-E and FoCal-H)</td>
</tr>
<tr>
<td>Q3/21</td>
<td>Gen09</td>
<td>test beam analysis</td>
</tr>
<tr>
<td>Q2/21</td>
<td>Gen09</td>
<td>performance simulation for final geometry</td>
</tr>
</tbody>
</table>
Acknowledgments

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF); [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS) and Région des Pays de la Loire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) and Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico, Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry
of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[41] ALICE Collaboration, S. Acharya et al., “Measurement of prompt D^0, D^+, D^{**}, and D^+_s production in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV”, [arXiv:1906.03425 [nucl-ex]]

electrons in p–Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV, arXiv:1805.04367 [nucl-ex].

[74] ALICE Collaboration, S. Acharya *et al.*, “Coherent J/ψ photoproduction at forward rapidity in ultra-peripheral Pb–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”, [arXiv:1904.06272 [nucl-ex]]

[91] ALICE Collaboration, B. Abelev *et al.*, “J/ψ suppression at forward rapidity in Pb–Pb collisions”.

The ALICE Collaboration

Affiliation Notes

I Deceased
II Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
III Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
IV Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
V Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
3 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
4 Budker Institute for Nuclear Physics, Novosibirsk, Russia
5 California Polytechnic State University, San Luis Obispo, California, United States
6 Central China Normal University, Wuhan, China
7 Centre de Calcul de l’IN2P3, Villeurbanne, Lyon, France
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy
11 Chicago State University, Chicago, Illinois, United States
12 China Institute of Atomic Energy, Beijing, China
13 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14 COMSATS University Islamabad, Islamabad, Pakistan
15 Creighton University, Omaha, Nebraska, United States
16 Department of Physics, Aligarh Muslim University, Aligarh, India
17 Department of Physics, Pusan National University, Pusan, Republic of Korea
18 Department of Physics, Sejong University, Seoul, Republic of Korea
19 Department of Physics, University of California, Berkeley, California, United States
20 Department of Physics, University of Oslo, Oslo, Norway
21 Department of Physics and Technology, University of Bergen, Bergen, Norway
22 Dipartimento di Fisica dell’Università ’La Sapienza’ and Sezione INFN, Rome, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
29 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
32 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
33 European Organization for Nuclear Research (CERN), Geneva, Switzerland
34 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
35 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
36 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
37 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
38 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
39 Fudan University, Shanghai, China
40 Gangneung-Wonju National University, Gangneung, Republic of Korea
41 Gauhati University, Department of Physics, Guwahati, India
42 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
43 Helsinki Institute of Physics (HIP), Helsinki, Finland
44 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
45 Hiroshima University, Hiroshima, Japan
46 Hochschule Worms, Zentrum für Technologietausch und Telekommunikation (ZTT), Worms, Germany
47 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
48 Indian Institute of Technology Bombay (IIT), Mumbai, India
49 Indian Institute of Technology Indore, Indore, India
50 Indonesian Institute of Sciences, Jakarta, Indonesia
51 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
52 INFN, Sezione di Bari, Bari, Italy
53 INFN, Sezione di Bologna, Bologna, Italy
54 INFN, Sezione di Cagliari, Cagliari, Italy
55 INFN, Sezione di Catania, Catania, Italy
56 INFN, Sezione di Padova, Padova, Italy
57 INFN, Sezione di Roma, Rome, Italy
58 INFN, Sezione di Torino, Turin, Italy
59 INFN, Sezione di Trieste, Trieste, Italy
60 Inha University, Incheon, Republic of Korea
Institut de Physique Nucléaire d’Orsay (IPNO), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3/CNRS), Université de Paris-Sud, Université Paris-Saclay, Orsay, France

Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

Institute for Subatomic Physics, Utrecht University/Nikhef, Utrecht, Netherlands

Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Institute of Space Science (ISS), Bucharest, Romania

Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

iThemba LABS, National Research Foundation, Somerset West, South Africa

Jeonbuk National University, Jeonju, Republic of Korea

Johann-Wolfgang-Goethe-Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany

Joint Institute for Nuclear Research (JINR), Dubna, Russia

Korea Institute of Science and Technology Information, Daejeon, Republic of Korea

KTO Karatay University, Konya, Turkey

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

Lawrence Berkeley National Laboratory, Berkeley, California, United States

Lund University Department of Physics, Division of Particle Physics, Lund, Sweden

Nagasaki Institute of Applied Science, Nagasaki, Japan

Nara Women’s University (NWU), Nara, Japan

National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece

National Centre for Nuclear Research, Warsaw, Poland

National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India

National Nuclear Research Center, Baku, Azerbaijan

National Research Centre Kurchatov Institute, Moscow, Russia

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Nikhef, National institute for subatomic physics, Amsterdam, Netherlands

NRC Kurchatov Institute IHEP, Protvino, Russia

NRC Kurchatov Institute ITEP, Moscow, Russia

NRNU Moscow Engineering Physics Institute, Moscow, Russia

Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic

Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
Università degli Studi di Foggia, Foggia, Italy
Università degli Studi di Pavia and Sezione INFN, Pavia, Italy
Università di Brescia and Sezione INFN, Brescia, Italy
Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, Michigan, United States
Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
Wigner Research Centre for Physics, Budapest, Hungary
Yale University, New Haven, Connecticut, United States
Yonsei University, Seoul, Republic of Korea