Updated measurement of decay-time-dependent CP asymmetries in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays

LHCb collaboration

Abstract
A search for decay-time-dependent charge-parity (CP) asymmetry in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb$^{-1}$. The D^0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D^0 and D^0 mesons are determined to be $A_{\Gamma}(K^+K^-) = (-4.3 \pm 3.6 \pm 0.5) \times 10^{-4}$ and $A_{\Gamma}(\pi^+\pi^-) = (2.2 \pm 7.0 \pm 0.8) \times 10^{-4}$, where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield $A_{\Gamma}(K^+K^-) = (-4.4 \pm 2.3 \pm 0.6) \times 10^{-4}$ and $A_{\Gamma}(\pi^+\pi^-) = (2.5 \pm 4.3 \pm 0.7) \times 10^{-4}$.
1 Introduction

Charge-parity (CP) violation is one of the key ingredients that are needed to generate the asymmetry between matter and antimatter observed in the Universe [1]. The Standard Model (SM) of particle physics, where all known CP-violating processes arise from the irreducible phase of the Cabibbo-Kobayashi-Maskawa matrix [2,3], is however unable to explain the observed asymmetry [4,5]. New dynamics that lead to a significant enhancement of CP-violating processes are required, making searches for CP violation a powerful probe for physics beyond the SM. Although CP violation has been experimentally observed in the down-type quark sector with measurements of K and B mesons [6–10], no indication of new dynamics has been reported yet. Only recently has CP violation been observed in the decay of charmed mesons [11]. The limited precision of the SM predictions, together with the limited amount of experimental information available [12], is, however, not yet sufficient to establish whether the observed signal could be explained by the SM [13–18]. Additional searches for CP violation in the charm sector, and particularly for more suppressed and yet-to-be-observed signs of CP-violating effects induced by D0–D̄0 mixing, have unique potential to probe for the existence of beyond-the-SM dynamics, which couple preferentially to up-type quarks [19–24].

This paper reports a search for CP violation in D0–D̄0 mixing, or in the interference between mixing and decay, through the measurement of the asymmetry between the effective decay widths, ˆΓ, of mesons initially produced as D0 and D̄0 and decaying into the CP-even final states f = K+K−, π+π−:

\[A_Γ(f) = \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(D^0 \to \bar{f})}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(D^0 \to \bar{f})}. \] (1)

Several measurements of the parameter AΓ(f) have been performed by the BaBar [25], CDF [26], Belle [27], and LHCb [28–30] collaborations, leading to the current world-average value of (−3.2 ± 2.6) × 10−4 [12], when neglecting differences between the D0 → K+K− and D0 → π+π− decays. The achieved sensitivity is still one order of magnitude larger than the theoretical predictions of AΓ ≈ 3 × 10−5 [31]. This paper updates the LHCb measurements of Refs. [28–30] using the data sample of proton-proton collisions collected at a center-of-mass energy of 13 TeV during 2016–2018, and corresponding to an integrated luminosity of 5.4 fb−1. The analysis is performed using D0 mesons originating from semileptonic decays of b hadrons, where the b-hadron candidates are only partially reconstructed. The charge of the muon identifies (“tags”) the flavor of the D0 meson at its production. The samples are dominated by B− → D0μ−X and B̄0 → D0μ+X decays, where X denotes any set of final-state particles that are not reconstructed.

The paper is structured as follows. The analysis strategy is described in Sec. 2. The LHCb detector is sketched in Sec. 3. Section 4 details the criteria used to select the signal and control samples. Section 5 describes the fit method, and its validation using D0 → K−π+ decays. The determination of the systematic uncertainties is outlined in Sec. 6 before concluding with the presentation of the final results in Sec. 7.

1Throughout the paper, the inclusion of the charge-conjugate decay mode is implied unless otherwise stated.
2 Analysis strategy

Due to the weak interactions, the mass eigenstates of neutral charm mesons, D_1 and D_2, are a superposition of the flavor states, D^0 and \bar{D}^0: $|D_{1(2)}\rangle = \alpha|D^0\rangle \pm \beta|\bar{D}^0\rangle$, where α and β are complex coefficients satisfying $|\alpha|^2 + |\beta|^2 = 1$. Hence, an originally produced D^0 meson can oscillate as a function of time into a \bar{D}^0 meson, and vice versa, before decaying. In the limit of CP symmetry, α equals β and the oscillations are characterized by only two dimensionless parameters, $x \equiv (m_1 - m_2)^2 / \Gamma$ and $y \equiv (\Gamma_1 - \Gamma_2) / \Gamma$, where $m_{1(2)}$ and $\Gamma_{1(2)}$ are the mass and decay width of the CP-even (odd) eigenstate $D_{1(2)}$, respectively, and $\Gamma \equiv (\Gamma_1 + \Gamma_2) / 2$ is the average decay width [32]. The values of x and y have been measured to be of the order of 1% or smaller [12].

In the limit of small mixing parameters, Eq. (2) can be approximated as a linear function in the interference between mixing and decay if ϕ_f be measured: (i) CP violation in the decay if $A_{CP}(f) \approx A_{\Gamma}(f) = A_{\Gamma}(f) = A_{\Gamma}(f)$ differs from zero; (ii) CP violation in mixing if $|q/p|$ differs from unity; (iii) CP violation in the interference between mixing and decay if $\tilde{\phi} f \equiv \arg((qA_f)/(|pA_f|)$ differs from zero. The latter two can be accessed by measuring the decay-time-dependent CP asymmetry

$$A_{CP}(D^0 \to f; t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)}.$$

In the limit of small mixing parameters, Eq. (2) can be approximated as a linear function of decay time [33][34],

$$A_{CP}(D^0 \to f; t) \approx A_{CP}^{dir}(f) - A_{\Gamma}(f) \frac{t}{\tau},$$

where $\tau = 1/\Gamma$ is the average lifetime of neutral D mesons. The coefficient $A_{\Gamma}(f)$ is related to the mixing and CP-violation parameters by [35]

$$A_{\Gamma}(f) \approx -x\phi_f + y(|q/p| - 1) - yA_{CP}^{dir}(f).$$

Contrarily to the measurement reported in Ref. [11], which is sensitive to $A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$, $A_{\Gamma}(f)$ is mostly sensitive to CP violation in mixing or in the interference between mixing and decay, because the term $yA_{CP}^{dir}(f) \lesssim 10^{-5}$ [12] can be neglected at the current level of experimental precision. Moreover, neglecting the $\mathcal{O}(10^{-3})$ difference between the weak phases of the decay amplitudes to the CP-even final states K^+K^- and $\pi^+\pi^-$, $\phi_f \approx \phi \equiv \arg(q/p)$ becomes universal and A_{Γ} independent of f [22].

Experimentally, the partial rate asymmetry of Eq. (2) cannot be measured directly because of charge-asymmetric detection efficiencies and asymmetric production rates of D^0 and \bar{D}^0 mesons from semileptonic b-hadron decays in proton-proton collisions. Instead, the “raw” asymmetry between the D^0 and \bar{D}^0 mesons yields,

$$A_{\text{raw}}(D^0 \to f) = \frac{N(B \to D^0(\to f)\mu^-X) - N(B \to \bar{D}^0(\to f)\mu^+X)}{N(B \to D^0(\to f)\mu^-X) + N(B \to \bar{D}^0(\to f)\mu^+X)},$$

is measured as a function of decay time. Neglecting higher-order terms in the involved asymmetries, which are at most $\mathcal{O}(1\%)$, the raw asymmetry can be approximated as

$$A_{\text{raw}}(D^0 \to f; t) \approx A_{CP}(D^0 \to f; t) + A_D(\mu) + A_F(D),$$

2
where $A_D(\mu)$ and $A_P(D)$ are the nuisance asymmetries due to the detection efficiency of the tagging muon and to the production rates of the neutral D mesons, respectively. The parameter A_Γ corresponds to the slope of the decay-time-dependent raw asymmetry only if A_D and A_P are independent of decay time. In this analysis, a possible time dependence of A_D and A_P is considered as a source of systematic uncertainty. The analysis procedure is validated on data using a control sample of Cabibbo-favored $D^0 \rightarrow K^-\pi^+$ decays, whose size exceeds that of the $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ signal modes by approximately one order of magnitude, and where measured asymmetries can be attributed solely to instrumental effects because no CP violation is expected. To avoid potential experimenter’s bias, the measured values of $A_\Gamma(K^+K^-)$ and $A_\Gamma(\pi^+\pi^-)$ remained unknown during the development of the analysis and were examined only after the analysis procedure and the evaluation of the systematic uncertainties were finalized.

3 Detector

The LHCb detector [36, 37] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter, is measured with resolution of $(15 + 29/p_T) \mu m$, where p_T is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The magnetic-field polarity is reversed periodically during data taking to mitigate the differences of reconstruction efficiencies of particles with opposite charges.

The online event selection is performed by a trigger, which consists of a hardware stage followed by a two-level software stage. In between the two software stages, an alignment and calibration of the detector is performed in near real-time [38]. The same alignment and calibration information is propagated to the offline reconstruction, ensuring consistent and high-quality particle identification information between the trigger and offline software. The identical performance of the online and offline reconstruction offers the opportunity to perform physics analyses directly using candidates reconstructed in the trigger [39, 40], which the present analysis exploits.

4 Selection

The selection criteria are mainly inherited from the measurement of the difference between the decay-time-integrated CP asymmetries in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays [11], which uses the same sample of proton-proton collisions. Signal candidates are first required
to pass the hardware trigger, which selects events containing at least one charged particle with high transverse momentum that leaves a track in the muon system. At the first stage of the software trigger, events are selected if they contain at least one track having large transverse momentum and being incompatible with originating from any PV, or if any two-track combination forming a secondary vertex passes a multivariate classifier. If a particle is identified as a muon, a lower p_T threshold is applied. At the second stage of the software trigger, the full event reconstruction is performed and requirements on kinematic, topological and particle-identification criteria are placed on the signal candidates. A D^0 candidate is formed by combining two well-reconstructed oppositely charged tracks that they are consistent with originating from a common vertex. The D^0 candidate must satisfy requirements on the vertex quality and has to be well separated from all PVs in the event. At the next step, the D^0 candidate is combined with a muon to form a B candidate. Only candidates where the D^0 meson decays downstream along the beam axis with respect to the B candidate are further considered. The B candidate must have a visible mass, $m(D^0\mu)$, and a corrected mass, $m_{\text{corr}}(B)$, consistent with a signal decay. The corrected mass is computed as $m_{\text{corr}}(B) \equiv \sqrt{m^2(D^0\mu) + p_T^2(D^0\mu)} + p_{\perp}(D^0\mu)$, where $p_{\perp}(D^0\mu)$ is the momentum of the $D^0\mu$ system transverse to the B flight direction, to partially correct for the unreconstructed particles in the decay of the B hadron.

In the offline selection, trigger signals are associated to reconstructed particles. Particle-identification criteria and requirements on $m(D^0\mu)$ and $m_{\text{corr}}(B)$ are tightened with respect to the online selection. The mass of the D^0 candidate is required to be in the ranges [1825, 1925] MeV/c^2, [1820, 1939] MeV/c^2 and [1780, 1940] MeV/c^2 for $D^0 \to K^+K^-$, $D^0 \to \pi^+\pi^-$ and $D^0 \to K^0\pi^+$ decays, respectively, to reduce the amount of background decays with misidentified final-state particles to a negligible level. All D^0 candidates with a reconstructed decay time that is either negative or exceeds ten times the D^0 lifetime are discarded. Mass vetoes suppress background from misreconstructed B decays to final states involving a charmonium resonance, such as $B^- \to \psi(\prime)(\to \mu^+\mu^-)h^-$ with $h = \pi$ or K, where a muon is misidentified as a pion or kaon and is used in the D^0 final state. Tag muons reconstructed in regions of phase space with large instrumental asymmetries, due to muons of one charge either being bent out of the detector acceptance or deflected into the LHC beam pipe, are vetoed. The fraction of signal candidates removed by this requirement is 10%. In addition, for $D^0 \to K^-\pi^+$ decays, candidates with kaon $p_T < 800$ MeV/c are removed to reduce instrumental asymmetry between the detection of negatively and positively charged kaons. Since these requirements do not reduce the background to a sufficiently low level for $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays, a dedicated boosted decision tree (BDT) is trained to isolate the signal candidates from background made of accidental combinations of charged particles ("combinatorial background"). The variables used in the BDT to discriminate signal from combinatorial background are: the fit quality of the D^0 and the B decay vertices; the D^0 flight distance; the D^0 impact parameter with respect to the closest PV; the transverse momenta of the D^0 decay products; the significance of the distance between the D^0 and B decay vertices; the visible and corrected masses of the B-hadron candidate. The BDT is trained using $D^0 \to K^-\pi^+$ decays as signal proxies and candidates from the D^0 mass sidebands of the signal decay modes as background. The optimal requirement on the BDT discriminant is chosen by maximizing the figure of merit $S/\sqrt{S+B}$ in a range corresponding to approximately three times the mass resolution around the D^0 mass, where S and B denote the signal and background yields, respectively. If an event contains more than one candidate after the full selection,
The mass distributions of the selected signal- and control-decay candidates are shown in Fig. 1. Details about the fit model are given in the next section. Approximately 9×10^6, 3×10^6, and 76×10^6 signal $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$, and $D^0 \rightarrow K^-\pi^+$ decays are respectively reconstructed over a smooth background dominated by accidental combinations of charged particles.

5 Fit method

The samples of selected $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^-\pi^+$ candidates are split into 20 approximately equally populated subsets ("bins") of decay time in the range $[0, 10]\tau$. In each decay-time bin, the raw asymmetry A_{raw} is determined by a simultaneous binned χ^2 fit to the $m(D^0)$ distributions of the D^0 and \bar{D}^0 candidates, split according to the muon tag. The total signal yields and asymmetries are treated as shared floating parameters.
of the fit. The fits include two components: signal and combinatorial background. The signal is described with a sum of a Gaussian and a Johnson’s S_U distribution [41], with parameters determined from a fit to the decay-time-integrated mass spectra. To account for the observed dependence of the signal mass shape on decay time, the means and widths of the signal distributions are left free to float individually for each decay-time bin. The mass shape is assumed to be the same for D^0 and \bar{D}^0 candidates for charge symmetric final states of the signal modes, and allowed to differ for $D^0 \to K^-\pi^+$ and $\bar{D}^0 \to K^+\pi^-$ candidates. The combinatorial background is described by a linear function, with a slope that floats independently in each decay-time bin and is allowed to differ between D^0 and \bar{D}^0 candidates.

The raw asymmetry measured in decay-time bin i is fit by minimizing the least squares with respect to the linear function $A_{\text{raw}}(0) - A_F\langle t\rangle_i/\tau$. The decay-time-independent terms of Eqs. (3) and (6) are incorporated into a single parameter, $A_{\text{raw}}(0)$, that is determined by the fit together with A_F. The average decay time in each bin i, $\langle t\rangle_i$, is computed using the decay-time distribution of background-subtracted D^0 candidates. Statistically consistent values are found for the control and signal modes. The D^0 lifetime τ is set to its known value [32]. Using large samples of simulated experiments, it is verified that the analysis procedure leads to unbiased estimates of the fit parameters and of their uncertainties. Figure 2 shows the projection of the decay-time-dependent fit to the $D^0 \to K^-\pi^+$ control sample. Here A_F is measured to be $(1.6 \pm 1.2) \times 10^{-4}$, where the uncertainty is statistical only. The measured value is consistent with zero as expected, confirming the validity of the assumption of decay-time-independent nuisance asymmetries. In $D^0 \to K^-\pi^+$ decays, due to their charge-asymmetric final states, detection asymmetries are more pronounced compared to the signal modes, where these asymmetries are only caused by the muons used to tag the flavor of the D^0 mesons.

6 Systematic uncertainties

The systematic uncertainty is dominated by the following contributions: the impact of decay-time acceptance and resolution; the effect of neglected background from combinations of real D^0 candidates with unrelated muons (which might lead to a wrong
identification of the neutral D-meson flavor); the impact of the assumed parametrization of the signal and background mass shapes. These effects are studied using large samples of pseudoexperiments, where the above sources of systematic biases are simulated.

The average decay-time resolution is estimated to be 127 fs using simulated decays. In the generation of the pseudoexperiments, the resolution is increased by 10% to account for differences between data and simulation. The decay-time acceptance is estimated from data by comparing the background-subtracted decay-time distributions of $D^0 \to K^-\pi^+$ candidates with an exponential function convoluted with the decay-time resolution. Different sets of pseudoexperiments, simulating the effect of decay-time acceptance and resolution, are generated with values of A_{Γ} in the range $[-30, 30] \times 10^{-4}$. Each pseudoexperiment is then fit with the default analysis approach and the difference between the measured and the input value of A_{Γ} is used to determine the systematic bias. As the bias is found to depend linearly on the true value of A_{Γ}, the largest bias observed within the 68% confidence-level interval of the current world average [12] is taken as the systematic uncertainty. This amounts to 0.3×10^{-4} (0.4×10^{-4}) for $D^0 \to K^+K^- (D^0 \to \pi^+\pi^-)$ decays.

The probability to wrongly associate unrelated muons to the D^0 candidates is estimated using the yields of “wrong-sign” $D^0(\to K^-\pi^+)\mu^+$ and $D^0(\to K^+\pi^-)\mu^-$ candidates in data, which are corrected for the rate of doubly Cabibbo-suppressed decays and decays due to flavor oscillation using the measurements reported in Ref. [42]. Mistag probabilities between 1% at low decay times and 3% at high decay times are observed. Also in this case the bias observed in pseudoexperiments depends linearly on the true value of A_{Γ}. Following the same strategy as discussed above, a systematic uncertainty of 0.3×10^{-4} (0.6×10^{-4}) is assigned for $D^0 \to K^+K^- (D^0 \to \pi^+\pi^-)$ decays.

To estimate any potential bias due to the specific choice of the mass model used in the fits that determine the raw asymmetries, samples of pseudoexperiments are generated using alternative signal and background models that describe the data equally well. The observed bias is independent of the input A_{Γ} and results in an additional systematic uncertainty of 0.3×10^{-4} for both signal decay channels.

Uncertainties on $\langle t \rangle_i/\tau$ arising from relative misalignments of subdetectors and from the uncertainty on the input value of the D^0 lifetime [32] give negligible contributions. Furthermore, unexpected biases due to a possible decay-time dependence of the nuisance asymmetries and due to the selection procedure are investigated using the $D^0 \to K^-\pi^+$ control sample and/or by measuring A_{Γ} in disjoint subsamples split by magnetic-field polarity, year of data taking, and kinematic variables of the B hadron, D^0 meson and muon candidates. No unexpected variations are observed, and no additional systematic uncertainties are assigned.

A summary of the relevant systematic uncertainties is given in Table 1. The total systematic uncertainty is obtained by summing in quadrature the individual components and amounts to 0.5×10^{-4} and 0.8×10^{-4} for $A_{\Gamma}(K^+K^-)$ and $A_{\Gamma}(\pi^+\pi^-)$, respectively.

7 Results and conclusions

A search for decay-time-dependent CP violation in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays is performed using proton-proton collision data recorded with the LHCb detector at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb$^{-1}$.

7
Table 1: Summary of the dominant contributions to the systematic uncertainty on $A_\Gamma(K^+K^-)$ and $A_\Gamma(\pi^+\pi^-)$.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>$A_\Gamma(K^+K^-)$ [10^{-4}]</th>
<th>$A_\Gamma(\pi^+\pi^-)$ [10^{-4}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decay-time resolution and acceptance</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Mistag probability</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Mass-fit model</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>0.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The D^0 mesons are required to originate from semileptonic b-hadron decays, such that the charge of the muon identifies the flavor of the neutral D meson at the moment of its production. The parameter A_Γ is determined from a fit to the asymmetry between D^0 and \bar{D}^0 yields as a function of decay time. The projections of the fits for both $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ samples are shown in Fig. 3. The results are

$$A_\Gamma(K^+K^-) = (-4.3 \pm 3.6 \pm 0.5) \times 10^{-4},$$
$$A_\Gamma(\pi^+\pi^-) = (2.2 \pm 7.0 \pm 0.8) \times 10^{-4},$$

where the uncertainties are statistical and systematic, respectively.

The measured values are combined with previous LHCb measurements based on data corresponding to 3 fb^{-1} collected at center-of-mass energies of 7 and 8 TeV, and
where the neutral D mesons originate either from semileptonic b-hadron decays \cite{28} or from promptly produced $D^{*+}(2010)$ mesons \cite{29}, with which they are consistent. The combination accounts for correlations in the systematic uncertainties and yields

$$A_\Gamma(K^+K^-) = (-4.4 \pm 2.3 \pm 0.6) \times 10^{-4},$$
$$A_\Gamma(\pi^+\pi^-) = (2.5 \pm 4.3 \pm 0.7) \times 10^{-4}.$$

Assuming A_Γ to be universal, the above two results can be averaged to yield $A_\Gamma = (-2.9 \pm 2.0 \pm 0.6) \times 10^{-4}$. The results do not show any indication of CP violation in charm mixing or in the interference between mixing and decay.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCB institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

References

LHCb collaboration

R. Aaij28, C. Abellán Beteta46, T. Ackernley56, B. Adeva43, M. Adinolfi50, H. Afsharnia6,
C.A. Aidala77, S. Aiola22, Z. Ajaltouni6, S. Aka61, P. Albicocco19, J. Albrecht11, F. Alessio44,
M. Alexander55, A. Alfonso Albero42, G. Alkhazov34, P. Alvarez Cartelle57, A.A. Alves Jr61,
S. Amato2, Y. Amhis8, L. An18, L. Anderlini18, G. Andreassi45, M. Andreotti17, F. Archilli13,
P. d’Argent13, J. Arnau Romeu7, A. Artamonov41, M. Artuso68, K. Arzymatov38, E. Aslanides7,
M. Atzeni46, B. Audurier53, S. Bachmann83, J.J. Back52, S. Baker57, V. Balagura8, W.
Baldini17,44, A. Baronov38, R.J. Barlow58, S. Barsuk8, W. Barter57, M. Bartolini20,44,h,
F. Baryshnikov74, G. Bassi25, V. Batozskaya92, B. Batsukh63, A. Battig11, V. Batta45,
A. Bay45, M. Becker11, F. Bedeschi25, I. Bediaga1, A. Beiter62, L.J. Bel28, V. Belavin38,
S. Belin23, N. Belly66, V. Beller15, K. Belous41, I. Belayev35, E. Ben-Haim9, G. Bencivenni9,
S. Benson8, S. Beranek10, A. Berezhnoy36, R. Bernet46, D. Berninghoff13, H.C. Bernstein63,
E. Berthéole9, A. Bertolin24, C. Betancourt46, F. Bett16,e, M.O. Bettler51, M. van Beuzekom80,
O. Boente Garcia43, T. Boettcher60, A. Boldyrev39, A. Bondar40,x, N. Bondar34, S. Borghi58,44,
M. Borisov38, M. Borsato15, J.T. Borsuk30, T.J.V. Bowcock26, C. Bozzi17, S. Braum19,
A. Brea Rodriguez43, M. Brodski44, J. Brodzicka30, A. Brossa Gonzalo12, D. Brundu23
E. Buchanan40, A. Buonaura46, C. Burr44, A. Bursche23, J.S. Butter28, J. Buyaert44,
W. Byczynski44, S. Cadeddu23, H. Caf68, R. Calabrese17,y, L. Calero Diaz19, S. Cali19,
R. Calladine49, M. Calvi21,i, M. Calvo Gomez42,m, A. Camboni42, P. Campana19,
D.H. Campora Perez44, L. Capriotti16,e, A. Carbone16,e, G. Carboni26, R. Cardinale20,h,
A. Cardini23, P. Carniti21,i, K. Carvalho Akiba28, A. Casais Vida43, G. Casse56, M. Cattaneo44,
G. Cavallero44, R. Cenci25,p, J. Cerasoli56, M.G. Chapman50, M. Charles9,44, Ph. Charpentier44,
G. Chatziokonomidis49, M. Chedeville5, V. Chekalina44, C. Chen4, S. Chen23, A. Chernov10,
S.-G. Chitic44, V. Chobanova43, M. Chrzaszcz44, A. Chubykin34, P. Ciambrone19, M.F. Cicala52,
X. Cid Vidal48, G. Ciezarek44, F. Cindolo46, P.E.L. Clarke54, M. Clemencic94, H.V. Cliff51,
J. Closier44, J.L. Clobbe4ck, V. Coco14, J.A.B. Coelho8, J. Cogagni8, E. Cogneras8,
L. Cojocari23, P. Collins44, T. Colombi44, A. Comerma-Montells13, A. Contu23, N. Cooke49,
G. Coombs55, S. Coquereau50, G. Corti54, C.M. Costa Sobral52, B. Couturier44, D.C. Craik60,
J. Crkovska78, A. Crocombe62, M. Cruz Torres1, R. Currie54, C. D’Ambrosio44, C.L. Da Silva78,
E. Dall’Occo28, J. Dalseno43,50, A. Danilina35, A. Davies58, O. De Aguilar Francisco34,
K. De Bruyn4, S. De Capua58, M. De Cian45, J.M. De Miranda1, L. De Paula2,
M. De Serio15,d, P. De Simone19, C.T. Dean58, W. Dean77, D. Decamp8, L. Del Buono9,
B. Delaney51, H.-P. Dembinski12, M. Demmee11, A. Dendek31, V. Denysenko46, D. Derkach39,
O. Deschamps6, F. Desse8, F. Dettori23, B. Dey69, A. Di Canto44, P. Di Nezza19, S. Didenko74,
H. Dijkstra44, F. Dorder29, M. Dorigo25,x, L. Douglas55, A. Dovbnya47, K. Dreimanns56,
M.W. Dudek40, L. Dufour44, G. Dujany9, P. Durante44, J.M. Durham28,78, D. Dutta58,
R. Dzhelyadin41,i, M. Dziewiecki13, A. Dziurad30, A. Dzyuba34, S. Easo53, U. Egede57,
V. Egorychev35, S. Eidemoller40,x, S. Eisenhardt54, S. Ek-In45, R. Ekholm11, L. Eklund55,
S. Ely63, A. Ene33, S. Escher10, S. Esen28, T. Evans44, A. Falabella16, J. Fan3, N. Farley49,
S. Farry56, D. Fazziini8, P. Fernandez Declara44, A. Fernandez Prieto43, F. Ferrari16,e,
L. Ferreira Lopes45, F. Ferreira Rodrigues5, S. Ferreres Sole26, M. Ferrillo46, M. Ferro-Luzzi44,
S. Filipov37, R.A. Fini15, M. Fiorini17,g, M. Finle31, K.M. Fischer59, C. Fitzpatrick44,
T. Fiutowski31, F. Fleuret8,8, M. Fontana44, F. Fontanelli20,h, R. Forty44, V. Franco Lima56,
M. Franco Sevilla62, M. Frank44, C. Frei44, D.A. Friday55, J. Fu22,q, M. Fuehring11, W. Funk44,
M. Féo44, E. Gabriel54, A. Gallas Torreira43, D. Galli16,e, S. Gallorini24, S. Gambetta54,
Y. Gan3, M. Gandelmann6, P. Gandini22, Y. Gao3, L.M. Garcia Martin36, B. Garcia Plana43,
F.A. Garcia Rosales8, J. García Pardoña46, J. Garra Tico51, L. Garrido42, D. Gascon42,

¹Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
²Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
³Center for High Energy Physics, Tsinghua University, Beijing, China
⁴Institute Of High Energy Physics (IHEP), Beijing, China
⁵Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
⁶Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
⁷Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
⁸LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
⁹LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
¹⁰I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
¹¹Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
¹²Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
¹³Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
¹⁴School of Physics, University College Dublin, Dublin, Ireland
¹⁵INFN Sezione di Bari, Bari, Italy
¹⁶INFN Sezione di Bologna, Bologna, Italy
¹⁷INFN Sezione di Ferrara, Ferrara, Italy
¹⁸INFN Sezione di Firenze, Firenze, Italy
¹⁹INFN Laboratori Nazionali di Frascati, Frascati, Italy
²⁰INFN Sezione di Genova, Genova, Italy
²¹INFN Sezione di Milano-Bicocca, Milano, Italy
²²INFN Sezione di Milano, Milano, Italy
²³INFN Sezione di Cagliari, Monserrato, Italy
²⁴INFN Sezione di Padova, Padova, Italy
²⁵INFN Sezione di Pisa, Pisa, Italy
²⁶INFN Sezione di Roma Tor Vergata, Roma, Italy
²⁷INFN Sezione di Roma La Sapienza, Roma, Italy
²⁸Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
²⁹Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
³⁰Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
³¹AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
³²National Center for Nuclear Research (NCBJ), Warsaw, Poland
³³Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
³⁴Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
³⁵Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
³⁶Yandex School of Data Analysis, Moscow, Russia
³⁷Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
³⁸Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
³⁹Yandex School of Data Analysis, Moscow, Russia
⁴⁰Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
⁴¹Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia
⁴²ICCUB, Universitat de Barcelona, Barcelona, Spain
⁴³Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
⁴⁴European Organization for Nuclear Research (CERN), Geneva, Switzerland
⁴⁵Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Syracuse University, Syracuse, NY, United States
Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria, associated to 2
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
University of Chinese Academy of Sciences, Beijing, China, associated to 3
South China Normal University, Guangzhou, China, associated to 3
School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 3
Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to 9
Institut für Physik, Universität Rostock, Rostock, Germany, associated to 13
Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to 28
National Research Centre Kurchatov Institute, Moscow, Russia, associated to 35
National University of Science and Technology “MISIS”, Moscow, Russia, associated to 35
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 35
Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to 42
University of Michigan, Ann Arbor, United States, associated to 63
Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to 63

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Vietnam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Siena, Siena, Italy

MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines

Novosibirsk State University, Novosibirsk, Russia

Sezione INFN di Trieste, Trieste, Italy

School of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China

Physics and Micro Electronic College, Hunan University, Changsha City, China

†Deceased