The Performance of the Muon, Electron and Photon Triggers at ATLAS

Batool Safarzadeh
University of Sussex
On behalf of the ATLAS Collaboration
Preface

Why are the electron, photon and muon triggers important?

ATLAS Preliminary

$H \rightarrow \gamma \gamma, m_H = 125.09 \text{ GeV}$

$\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

ATLAS Public Results
40 MHz of p-p collisions are reduced to a rate of 100 kHz by the Level-1 (L1) Trigger. After further processing by the High-Level Trigger (HLT), the final event recording rate is of ~1 kHz.

L1 Trigger:
Fast and coarse, hardware-based trigger

- **L1 Calo** calorimeter trigger for Electrons, Photons, Jets, taus, Missing ET
- **L1 Muon** to trigger on Muons
- **L1 Topo** topological Processor using information from L1CALO and L1Muon

Sends Region-of-Interest (RoI) to HLT for the final decision and data-storage

HLT Trigger:
Software-based trigger

- Fast reconstruction inside the given RoI
- Precise measurements, using offline based reconstruction tools
Electron/Photon Trigger

- L1 trigger
 - uses calorimeter information in the central ($|\eta| < 2.5$) region to build an EM RoI consisting of 4×4 trigger towers, with granularity 0.1×0.1 in η and φ
 - A sliding–window algorithm identifies a local energy maximum from the four possible pairs of nearest neighbour towers in a 2×2 central region

Electrons HLT
- Fast Calorimeter reconstruction:
 - Neural-network-based (Ringer) algorithm for electrons with $E_T > 15$ GeV
 - Shower shape-based selection for electrons < 15 GeV
 - Tracks reconstructed in the Inner Detector matched to electromagnetic clusters
- Precision reconstruction:
 - Identification based on a likelihood discriminator
 - ‘loose’, ‘medium’, ‘tight’ working points defined

Photons HLT
- Fast Calorimeter reconstruction:
 - Calorimeter-only selection
- Precision Reconstruction:
 - Rectangular cuts on calorimeter shower shapes
 - ‘Loose’, ‘Medium’ and ‘Tight’ identification working points
 - No tracking used for photons at HLT

arXiv:1909.00761
Ringer Algorithm

- Since 2017
- Use lateral shower development
- Concentric ring energy sums in each calorimeter layer
- Transverse energy in each ring normalised to total transverse energy in the RoI
- Ring energies fed into multilayer perceptron (MLP) neutral networks

Ringer increases fast calorimeter step reconstruction time, but reduces input candidates to the tracking significantly reduced CPU demand
50% CPU reduction at the HLT for the lowest p_T un-prescaled single electron trigger

arXiv:1909.00761
Trigger performance is evaluated using tag and probe method using $Z \rightarrow ee$ events
- Tag: lowest un-prescaled single-electron trigger
- Probe: used to measure the trigger efficiency, opposite charge to tag
- Single electron trigger combination: un-prescaled single-electron triggers with lowest thresholds
- Efficiency is measured in respect to offline electron

Sharper turn on in 2015: Lower threshold, no isolation, looser identification

Inefficiencies in 2016:
- MC-based Likelihood in precision calorimeter step
- 2017-2018: data-driven likelihood Id, introduction of Ringer algorithm
- Pileup dependency reduced towards end of Run 2
Photon Trigger Performance

- Trigger efficiency:
 - measured using Z radiative decay method using \(Z \rightarrow ll\gamma \)
- Tag and probe selection:
 - tag: electrons or muons from lowest \(p_T \) un-prescaled single and double leptonic trigger
 - probe: tight photon candidate

Slightly lower efficiency in 2017-2018 due to the tightening of photon ID
Sharp turn on and small dependency on pileup
Muon Trigger

- Muon Spectrometer (MS) in toroidal field (2 - 7.5 Tm)
- L1 Muon trigger:
 - Only some part of MS information
 - L1 trigger acceptance: $|\eta| < 2.4$
- HLT:
 - Uses full MS information for track segments and tracks reconstructed in the Inner Detector (ID)
 - Combined muons then formed from the muon segments and ID tracks

Muon Trigger Sequence:

1. L1 RoI
2. Fast MS Tracking
3. Fast ID tracking + MS-ID comb
4. Precision MS tracking
5. Precision ID tracking + MS-ID comb
Muon Trigger Performance

Muon trigger efficiency in the Barrel

- The efficiency loss in the barrel is essentially due to uncovered detector regions - eg the ATLAS supporting legs
- HLT is 100% efficiency relative to L1
- Almost no pileup dependency

Muon trigger efficiency in the Endcap

Muon Trigger
Electron, Photon Triggers Upgrade in Run 3

L1 CALO
- The Run-3 LAr calorimeter's trigger digitised readout improved with finer granularity
- New suite of L1 hardware designed to take advantage of this
 - Finer granularity of the super cells allows to use shower shapes closer to offline
 - Better resolution
 - Sharper trigger turn-on

Same rate − 0.5 x rate

Trigger public page
Muon Upgrade in Run 3

- The chambers of the muon innermost layer will be replaced with higher granularity detectors, New Small Wheels (NSW), provide precise tracking information.

- Rate reduction by NSW is due to requiring additional inner coincidence of the big wheel to reject fakes, and also to re-calculate the p_T only with few % drop in efficiency, ~50% rate reduction is expected for L1 MU20.
Summary

- Good understanding of the electron, muon and photon trigger performance during Run 2

- All measurements show stable performance during Run 2 and efficient triggering of electrons, muons and photons.

- Many ongoing efforts to improve trigger performance toward Run 3

 - Aim to get closer to offline selections than in Run 2
 - Multithreading techniques for HLT
Backup
References

- Web References
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerPublicResults
 - https://twiki.cern.ch/twiki/pub/AtlasPublic/EgammaTriggerPublicResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/L1MuonTriggerPublicResults
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MuonTriggerPublicResults
L1 Electron/Photon Trigger

Trigger performance is evaluated using tag and probe method using $Z \rightarrow ee$ events

Tag: lowest un-prescaled single-electron trigger
Probe: used to measure the trigger efficiency, opposite charge to tag

ATLAS
pp data 2017, $\sqrt{s} = 13$ TeV

arXiv:1909.00761
Electron/Photon HLT Reconstruction

arXiv:1909.00761
Trigger performance is evaluated exploiting tag and probe method using $Z \rightarrow \mu\mu$ events or $J/\psi \rightarrow \mu\mu$ at lower p_T.

Efficiency is measured in respect to offline muon.

- Efficiency is about 90% in the endcap and nearly 70% in the barrel.
- The efficiency loss in the barrel is essentially due to uncovered detector regions - e.g., the ATLAS supporting legs.