Measurement of the χ_{c1} and χ_{c2} polarizations in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

The polarizations of promptly produced χ_{c1} and χ_{c2} mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at $\sqrt{s} = 8$ TeV. The χ_c states are reconstructed via their radiative decays $\chi_c \to J/\psi \gamma$, with the photons being measured through conversions to e^+e^-, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_{c2} to χ_{c1} yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the $J/\psi \to \mu^+\mu^-$ decay, in three ranges of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.

Submitted to Physical Review Letters
Quarkonium production is a benchmark for understanding how quarks combine into hadrons. The relative heaviness of c and b quarks makes it possible to describe the production process in the nonrelativistic quantum chromodynamics (NRQCD) factorization approach \cite{1-8}, a rigorous framework valid when the quark velocities are small. This theory successfully described quarkonium production cross sections measured \cite{9} at high transverse momentum, p_T, by complementing the earlier color-singlet model \cite{10,11} with subprocesses where the bound state originates from colored $Q\bar{Q}$ pairs, which lose their color via gluon emissions, changing the angular momentum quantum numbers L, S, and J.

In contrast to this complex picture of quarkonium production as a superposition of several color-singlet and multi-step color-octet processes, ATLAS and CMS measurements \cite{12-21} reveal unexpectedly simple patterns \cite{22-24}. First, the five S-wave ($L = 0$, $S = 1$, $J = 1$) charmonium and bottomonium states (J/ψ, $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$) are produced with indistinguishable mass-rescaled p_T spectra (p_T/M). This observation, indicating a universal trend independent of the bound-state excitation level and of the constituent quark mass, is also followed by the χ_{c1} and χ_{c2} P-wave ($L = 1$, $S = 1$) states, at the current level of experimental precision \cite{17-19}. Second, the measurements of the polarizations of the five S-wave quarkonia do not show indications, over a wide p_T range, of any deviation from unpolarized production, where all angular momentum projections J_z are equally probable. This is a peculiar condition for vector particles, not seen for the Z and W bosons \cite{25-32}, nor for Drell–Yan dileptons \cite{33-38}, which are always significantly polarized, as are the quarkonia produced at low p_T (i.e., $p_T < M$) \cite{39,40}. The lack of polarization of vector quarkonia was a long-standing challenge for NRQCD \cite{41}, but recent global-fit analyses \cite{4,22-24,42} have shown that cross sections and polarizations can be consistently described. This progress revealed a distinct set of fine-tuned long-distance parameters \cite{43} and triggered another strong prediction, this time regarding the remaining gap in the set of LHC quarkonium cross section and polarization measurements mentioned above: the polarizations of the χ_{c1} and χ_{c2} states should be opposite and almost maximal \cite{44}.

This Letter reports the first measurement of the polarizations of promptly produced χ_{c1} and χ_{c2} mesons, using proton-proton (pp) data collected at the LHC by the CMS experiment at a center-of-mass energy of $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.1 fb^{-1}. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid. A detailed description of the CMS detector, together with a definition of the coordinate system used and relevant kinematic variables, can be found in Ref. \cite{45}.

The event sample was collected with a two-level trigger system \cite{46}. At level-1, custom hardware processors select events with two muons. The high-level trigger requires an opposite-sign muon pair of invariant mass 2.8–3.35 GeV, a dimuon vertex fit χ^2 probability larger than 0.5%, and a distance of closest approach between the two muons smaller than 0.5 cm. The trigger also requires that the dimuon has $p_T > 7.9$ GeV and rapidity $|y| < 1.25$. The offline reconstruction requires two oppositely charged muons matching those that triggered the detector readout. The muon tracks must pass high-purity track quality requirements \cite{47}, have $p_T > 3.5$ GeV, $|\eta| < 1.6$, and fulfill the soft muon identification requirements \cite{48}, which imply, in particular, more than five hits in the silicon tracker, of which at least one is in the pixel layers. The muons are combined to form J/ψ candidates, which are kept for further processing if $|y| < 1.2$.
and $8 < p_T < 30$ GeV. Promptly produced J/ψ mesons are selected by requiring the distance between the dimuon vertex and the interaction point be smaller than 2.5 times its uncertainty.

The analysis uses $\chi_c \rightarrow J/\psi \gamma$ decays, with the J/ψ decaying to a dimuon. The photons are detected through their conversions to e^+e^- in the beam pipe and in the material of the silicon tracker, starting from two oppositely charged tracks, of which one has at least four tracker hits and the other at least three. The tracks must have a small angular separation, a small distance of closest approach, a conversion vertex at least 1.5 cm away from the beam axis, and a χ^2 probability of the kinematic fit imposing zero mass and a common vertex that exceeds 0.05%.

A more detailed account of the reconstruction and selection procedures is given in Refs. [18],[19]. The photons must have $p_T > 0.4$ GeV and $|\eta| < 1.5$. If the distance along the beam axis between the dimuon vertex and the extrapolated photon trajectory is smaller than 5 mm, a χ_c candidate is formed through a kinematic fit of the dimuon-photon system, constraining the dimuon mass to the J/ψ mass [19], the dielectron mass to zero, and requiring that the two muons and the photon have a common vertex. Only χ_c candidates with a fit χ^2 probability larger than 1% and invariant mass between 3.2 and 3.75 GeV are kept for the evaluation of the χ_{c1} and χ_{c2} yields. After all selection criteria, the event samples used to perform the analysis, in the J/ψ p_T ranges 8–12, 12–18, and 18–30 GeV, contain around 103 000, 106 000, and 45 000 χ_c candidates, respectively.

The seemingly natural way to measure the χ_{c1} and χ_{c2} Polarizations is to determine the angular distribution of the considered χ_c decay; in the present case, this means the distribution of the photon direction in the χ_c rest frame. However, that distribution depends not only on the χ_c angular momentum composition, but also, and possibly in a very significant way, on the (poorly known) contributions of photons with large orbital angular momentum ($J^T > 1$). A cleaner determination of the χ_c polarization is obtained by measuring the dilepton angular decay distribution in the rest frame of the daughter J/ψ [50]. It is crucial to choose as polarization axis for the J/ψ decay not the J/ψ direction in the χ_c rest frame, as usually done in cascade decays, but rather any axis (center-of-mass helicity or Collins–Soper [51], for instance) defined in terms of the beam momenta in the J/ψ rest frame and ignoring its origin, as if it were observed inclusively. Contrary to what happens when measuring the photon distribution in the χ_c rest frame, the latter choice leads to measurements that are insensitive to the higher-order multipoles and reflect only the polarization state of the mother χ_c. The present analysis is performed in the center-of-mass helicity frame [52] and does not use the measured photon momentum, except to select, through the $J/\psi \gamma$ invariant mass distribution, the J/ψ mesons resulting from χ_{c1} or χ_{c2} decays. The dimuon angular decay distribution is parametrized with the function [53]

$$W(\cos \theta, \varphi | \bar{\lambda}) = \frac{3}{4\pi(3 + \lambda_\theta)} \left(1 + \lambda_\theta \cos^2 \theta + \lambda_\varphi \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi \right),$$

(1)

where θ and φ are the polar and azimuthal coordinates of the positive lepton direction in the J/ψ rest frame, the system of axes being defined with z in the direction of the polarization axis and y perpendicular to the production plane. The χ_c angular momentum composition is encoded in the shape parameters λ_θ, λ_φ, and $\lambda_{\theta\varphi}$, whose values depend on the choice of polarization frame but must always be within certain physical domains [50], narrower than the parameter space of inclusive vector-particle production [54]. The relation between the shape parameters and the polarization configuration depends on the quarkonium state. For example, $\lambda_\theta = +1$ indicates $I_z = \pm 1$ for the J/ψ, $I_z = 0$ for the χ_{c1}, and $I_z = +2$ for the χ_{c2}; conversely, states in the $I_z = 0$ angular momentum configuration lead to $\lambda_\theta = -1$ for the J/ψ, $\lambda_\theta = +1$ for the χ_{c1}, and $\lambda_\theta = -0.6$ for the χ_{c2}. Simulation studies have shown that all physically allowed differences between the χ_{c1} and χ_{c2} Polarizations can be reliably determined through the measurement of
the χ_{c2}/χ_{c1} yield ratio as a function of $|\cos \theta|$ or ϕ. Detector effects (trigger, data reconstruction, event selection) cancel to a large extent in the ratio and have a negligible impact on the results.

The analysis is independently performed in three J/ψ p_T ranges: 8–12, 12–18, and 18–30 GeV. In each range, the events are split into subsamples corresponding to six equidistant ϕ bins between 0 and 90°. Folding ϕ into the first quadrant reduces the effect of the statistical fluctuations without any loss of information, given the four-fold ϕ symmetry that the angular distributions obey. For each p_T bin, the six $J/\psi \gamma$ invariant mass distributions are simultaneously fitted with an unbinned maximum likelihood fit. In the mass fit model, identical for all ϕ bins, each of the χ_{c1} and χ_{c2} signal peaks is represented by a double-sided Crystal Ball (CB) function [55], which complements a Gaussian core distribution with lower and upper power-law tails. The underlying combinatorial background, reflecting uncorrelated $J/\psi \gamma$ associations, is parametrized by an exponential function multiplied by a term that provides a low-mass turn-down, $(1 + \text{erf}((m - \mu_{bg}) / \sigma_{bg})) \exp(-m/\lambda_{bg})$, where m is the $J/\psi \gamma$ invariant mass and μ_{bg}, σ_{bg}, and λ_{bg} are shape parameters. Although the results of this analysis are insensitive to the presence of a small peak reflecting the χ_{c0} decays, the fit model includes this background term, represented by a Breit–Wigner convolved with a Gaussian resolution function. To minimize fit instabilities, the χ_{c0} shape and yield parameters are determined from the corresponding parameters of the χ_{c1} term. The simultaneous fit has the advantage of reducing by a factor of six the number of free parameters defining the shapes of the signal and background mass models, by requiring that those parameters are independent of ϕ, an assumption validated by studies of simulated and measured event samples. The parameters of interest resulting from this fit are the six χ_{c2}/χ_{c1} yield ratios.

The analysis is also performed as a function of $|\cos \theta|$, splitting the events in 6, 7, or 5 $|\cos \theta|$ bins, depending on the p_T range. The $|\cos \theta|$ coverage is smaller in the lowest p_T range (up to 0.45 instead of up to 0.625) because those events are the ones most affected by the single-muon p_T cut. Analogously to the procedure just described for the ϕ dimension, the χ_{c2}/χ_{c1} yield ratios are obtained as a function of $|\cos \theta|$ through a simultaneous fit of the $J/\psi \gamma$ invariant mass distributions. In this case, however, some of the shape parameters (such as the mass resolutions) show a slight correlation with $|\cos \theta|$, so that they are not required to be independent of $|\cos \theta|$. While some parameters are unconstrained, others are required to depend linearly on $|\cos \theta|$, as an intermediate way of minimizing the number of free parameters.

Figure [1] shows one of the simultaneously fitted $J/\psi \gamma$ invariant mass distributions. The two signal peaks are well resolved, with widths around 6 MeV, consistent with the predictions from simulation. All of the fitted χ_c mass distributions show good fit qualities, as judged from the χ^2 between the binned distributions and the fitted functions, the worst case giving $\chi^2 = 601$ for 569 degrees of freedom (ndf).

The χ_{c2}/χ_{c1} yield ratios provided by the fits of the χ_c mass distributions are corrected for the slightly different acceptances and efficiencies for the detection of the two states, using fine-grained acceptance times efficiency three-dimensional maps, $A(|\cos \theta|, \phi, p_T)$, computed with large samples of simulated events. The corrected ratios are reported in Tables A.1 and A.2 of Appendix [A] and shown in Fig. [2], where it can be seen that the uncorrected and corrected values are almost identical, apart from normalization factors irrelevant for the determination of the polar and azimuthal anisotropies.

Several sources of potential systematic effects have been considered, by redoing the analysis with different inputs and comparing the obtained results with the nominal ones. The results are insensitive to variations of the thresholds used to reject the nonprompt contamination from b hadron decays, estimated to be around 5%, or events with a poor kinematic vertex fit quality.
in the reconstruction of the χ_c candidates. The fits of the mass distributions were redone using alternative options for the low- and high-mass tails of the double-sided CB functions, and by varying the combinatorial background description, both by changing the floating parameters of the nominal function and by using the alternative function $(x-x_0)^\lambda \exp(\nu(x-x_0))$, where ν is left free, λ is fitted to a constant, and $x_0 = 3.2$ GeV, a value determined in fits to the background-only mass distributions obtained by excluding the 3.37–3.6 GeV region. The sensitivity of the results to the acceptance and efficiency corrections was evaluated by redoing the analysis with maps computed with alternative single-muon and photon detection efficiencies, as well as with simulated samples generated with different p_T/M shapes for each of the two χ_c states. All effects lead to similar variations in the yields of the two states and cancel, to a large extent, in the χ_{c2}/χ_{c1} ratio, apart from a normalization shift that has no impact on the angular anisotropies.

The χ_{c2} to χ_{c1} yield ratios as a function of φ, shown in Fig.2 (left), are compatible with being flat, excluding large differences in azimuthal anisotropy, as exemplified by the two curves compared to the data points in the second p_T range. These curves represent the simplest conceivable polarization hypotheses leading to large azimuthal effects in the helicity frame: χ_{c1} and χ_{c2} have maximally different polar anisotropies in the Collins–Soper frame, corresponding to specific alignments of their angular momentum vectors along the collision direction ($f_{x_{c1}}^z = f_{x_{c2}}^z = 0$ and $f_{x_{c1}}^\perp = \pm 1$, $f_{x_{c2}}^\perp = \pm 2$, for the dotted and dash-dotted curve, respectively). In fact, the change from the Collins–Soper to the helicity quantization axis is almost a 90° rotation, transforming polarized distributions into azimuthally anisotropic ones. This uniform φ behavior confirms the choice of the helicity axis as the one that, as expected in this kinematic regime, should reflect most closely the natural alignment of the angular momentum vector, maximizing the polar anisotropy effects.

In Fig.2 (right) the measured $|\cos \theta|$ dependence of the χ_{c2}/χ_{c1} ratio is compared to the analytic expression $(1 + \lambda_\varphi^{x_{c2}} \cos^2 \theta) / (1 + \lambda_\varphi^{x_{c1}} \cos^2 \theta)$, derived from Eq.1 integrating over φ. Two scenarios are considered. The “unpolarized scenario”, $\lambda_\varphi^{x_{c1}} = \lambda_\varphi^{x_{c2}} = 0$ independently of p_T, represented in Fig.2 (right) by the dashed flat lines, gives a poor description of the data. A fit with free normalizations leads to a $\chi^2/\text{ndf} = 31/15$, corresponding to a χ^2 probability of only 0.9%. The “NRQCD scenario” [44], where $\lambda_\varphi^{x_{c1}} = 0.72$, 0.65, and 0.56, and $\lambda_\varphi^{x_{c2}} = -0.48$, -0.35, and -0.19, for the average p_T values in each of the three ranges, agrees well with the data, with a fit $\chi^2/\text{ndf} = 13/15$, corresponding to a χ^2 probability of 58%.
Figure 2: The χ_{c2}/χ_{c1} yield ratio vs. φ (left) and $|\cos \theta|$ (right), in the helicity frame, for the three J/ψ p_T ranges. The grey markers (slightly shifted horizontally) show the values before acceptance and efficiency corrections, scaled vertically for an easier shape comparison. The vertical bars represent the statistical uncertainties and the horizontal bars the bin widths. The solid and dashed curves show, respectively, the “NRQCD” and “unpolarized” scenarios. The dotted and dash-dotted curves illustrate maximally different natural polarizations in the Collins–Soper frame, leading to large differences in azimuthal anisotropy.

Figure 3: Two-dimensional λ^X_{φ} vs. $\lambda^X_{\chi_{c1}}$ contours, at 68.3, 95.5, and 99.7% confidence levels (CL), measured combining the three J/ψ p_T ranges. The physically allowed region (red rectangle) and six pure angular momentum configurations (markers) are also shown. The crossing of the two dashed lines represents the unpolarized case.

Figure 3 shows the polar anisotropy parameters $\lambda^X_{\chi_{c1}}$ and $\lambda^X_{\chi_{c2}}$ derived from the measured $|\cos \theta|$ dependence of the χ_{c2}/χ_{c1} ratio, combining the three p_T ranges. The contours in the λ^X_{φ} vs. $\lambda^X_{\chi_{c2}}$ plane are obtained by scanning the two λ_{φ} parameters and the three normalizations to evaluate the χ^2 profiles corresponding to the 68.3, 95.5, and 99.7% confidence levels. The unpolarized scenario ($\lambda^X_{\varphi} = \lambda^X_{\chi_{c2}} = 0$), as well as more than half of the physically allowed region,
The \(\lambda_{c2} \) values (circles) measured when the \(\lambda_{c1} \) values (squares) are fixed to the unpolarized (left) or the NRQCD (right) scenarios, as a function of \(p_T/M \) of the J/\(\psi \). The purple band on the right is the NRQCD prediction for \(\lambda_{c2} \) [44], while in the unpolarized scenario \(\lambda_{c2} = \lambda_{c1} = 0 \). The markers are shown at the average \(p_T/M \) values in each bin, the vertical bars represent the total uncertainties, and the horizontal bars the bin widths. The dashed lines indicate the physically allowed range of \(\lambda_{c2} \).

including all cases where \(\lambda_{c2} \geq \lambda_{c1} \), are outside the 99.7% contour. In terms of specific pure angular momentum configurations, it can be seen that, in particular, the cases \(J_{c2} = \pm 2 \) and \(J_{c1} = J_{c2} = \pm 1 \) are strongly disfavored.

The correlation between the \(\lambda_{c1} \) and \(\lambda_{c2} \) parameters can be accurately expressed through a simple parametrization:

\[
\lambda_{c2} = (-0.94 \pm 0.90 \lambda_{c1}^{\chi_{c1}}) \pm (0.51 \pm 0.05 \lambda_{c1}^{\chi_{c1}}),
\]

\[
(-0.76 \pm 0.80 \lambda_{c1}^{\chi_{c1}}) \pm (0.26 \pm 0.05 \lambda_{c1}^{\chi_{c1}}),
\]

\[
(-0.78 \pm 0.77 \lambda_{c1}^{\chi_{c1}}) \pm (0.26 \pm 0.06 \lambda_{c1}^{\chi_{c1}}),
\]

for the three consecutive \(p_T \) ranges. These expressions can be used for direct comparisons to theoretical scenarios.

Figure 4 shows, as a function of \(p_T/M \) of the J/\(\psi \) (equal on average to the \(p_T/M \) of the \(\chi_{c1} \) and \(\chi_{c2} \) mothers [23]), the \(\lambda_{c2} \) values measured when \(\lambda_{c1}^{\chi_{c1}} \) is fixed to the predictions of the two scenarios already considered in Fig. 2. Setting \(\lambda_{c1}^{\chi_{c1}} = 0 \) leads to \(\lambda_{c2} \) values that are significantly different from zero (and even tend to be outside the physically allowed range). The NRQCD prediction is, instead, in good agreement with the measurement.

In summary, the polarizations of promptly produced \(\chi_{c1} \) and \(\chi_{c2} \) mesons have been measured in pp collisions at \(\sqrt{s} = 8 \) TeV. The analysis uses the J/\(\psi \gamma \) decay channel in three J/\(\psi \) \(p_T \) ranges between 8 and 30 GeV. The measurement, made in the helicity frame, shows a significant difference between the polar anisotropy parameters \(\lambda_{c1}^{\chi_{c1}} \) and \(\lambda_{c2}^{\chi_{c1}} \). The result strongly disfavors, in particular, the unpolarized scenario uniformly observed in the J/\(\psi \), \(\psi(2S) \), and \(\Upsilon \) measurements. Remarkably, the measurement agrees with the NRQCD prediction. This result provides a new piece in the experimental scenario of quarkonium production at mid-rapidity and the first significant indication of kinematic differences between the various quarkonia. It should improve the understanding of hadron formation and of the interplay between the long- and short-distance aspects of the strong interaction.
Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MESTD (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[55] M. J. Oreglia, “A study of the reactions $\psi' \rightarrow \gamma\gamma\psi$” PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236, see Appendix D.
A Numerical values of the measured yield ratios

Table A.1: The ratio of the χ_{c2} to χ_{c1} yields, corrected for acceptance and efficiencies, vs. ϕ, in three J/ψ p_T ranges. The average ϕ values are also given.

<table>
<thead>
<tr>
<th>J/ψ p_T (GeV)</th>
<th>ϕ (degrees)</th>
<th>$\langle \phi \rangle$ (degrees)</th>
<th>χ_{c2}/χ_{c1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>8–12</td>
<td>0–15</td>
<td>7.8</td>
<td>0.451$^{+0.027}_{-0.025}$</td>
</tr>
<tr>
<td></td>
<td>15–30</td>
<td>22.6</td>
<td>0.452$^{+0.026}_{-0.025}$</td>
</tr>
<tr>
<td></td>
<td>30–45</td>
<td>37.6</td>
<td>0.499$^{+0.027}_{-0.026}$</td>
</tr>
<tr>
<td></td>
<td>45–60</td>
<td>52.6</td>
<td>0.472$^{+0.025}_{-0.024}$</td>
</tr>
<tr>
<td></td>
<td>60–75</td>
<td>67.6</td>
<td>0.450$^{+0.023}_{-0.022}$</td>
</tr>
<tr>
<td></td>
<td>75–90</td>
<td>82.5</td>
<td>0.445$^{+0.023}_{-0.022}$</td>
</tr>
<tr>
<td>12–18</td>
<td>0–15</td>
<td>7.7</td>
<td>0.438$^{+0.021}_{-0.020}$</td>
</tr>
<tr>
<td></td>
<td>15–30</td>
<td>22.5</td>
<td>0.393$^{+0.018}_{-0.017}$</td>
</tr>
<tr>
<td></td>
<td>30–45</td>
<td>37.5</td>
<td>0.412$^{+0.019}_{-0.018}$</td>
</tr>
<tr>
<td></td>
<td>45–60</td>
<td>52.4</td>
<td>0.449$^{+0.020}_{-0.019}$</td>
</tr>
<tr>
<td></td>
<td>60–75</td>
<td>67.5</td>
<td>0.445$^{+0.020}_{-0.019}$</td>
</tr>
<tr>
<td></td>
<td>75–90</td>
<td>82.5</td>
<td>0.400$^{+0.018}_{-0.017}$</td>
</tr>
<tr>
<td>18–30</td>
<td>0–15</td>
<td>7.6</td>
<td>0.425$^{+0.030}_{-0.028}$</td>
</tr>
<tr>
<td></td>
<td>15–30</td>
<td>22.6</td>
<td>0.412$^{+0.028}_{-0.027}$</td>
</tr>
<tr>
<td></td>
<td>30–45</td>
<td>37.5</td>
<td>0.420$^{+0.030}_{-0.028}$</td>
</tr>
<tr>
<td></td>
<td>45–60</td>
<td>52.5</td>
<td>0.421$^{+0.030}_{-0.028}$</td>
</tr>
<tr>
<td></td>
<td>60–75</td>
<td>67.6</td>
<td>0.399$^{+0.028}_{-0.026}$</td>
</tr>
<tr>
<td></td>
<td>75–90</td>
<td>82.5</td>
<td>0.409$^{+0.028}_{-0.027}$</td>
</tr>
</tbody>
</table>
Table A.2: The ratio of the χ_{c2} to χ_{c1} yields, corrected for acceptance and efficiencies, vs. $|\cos \theta|$, in three J/ψ p_T ranges. The average $|\cos \theta|$ values are also given.

| J/ψ p_T (GeV) | $|\cos \theta|$ | $\langle |\cos \theta| \rangle$ | χ_{c2}/χ_{c1} |
|-----------------------|----------------|-----------------|-----------------|
| 8–12 | 0.000–0.075 | 0.037 | $0.453^{+0.018}_{-0.018}$ |
| | 0.075–0.150 | 0.111 | $0.463^{+0.021}_{-0.020}$ |
| | 0.150–0.225 | 0.185 | $0.489^{+0.025}_{-0.024}$ |
| | 0.225–0.300 | 0.259 | $0.439^{+0.024}_{-0.025}$ |
| | 0.300–0.375 | 0.332 | $0.388^{+0.035}_{-0.031}$ |
| | 0.375–0.450 | 0.404 | $0.411^{+0.056}_{-0.054}$ |
| 12–18 | 0.000–0.075 | 0.038 | $0.476^{+0.023}_{-0.021}$ |
| | 0.075–0.150 | 0.113 | $0.438^{+0.020}_{-0.019}$ |
| | 0.150–0.225 | 0.187 | $0.421^{+0.020}_{-0.019}$ |
| | 0.225–0.300 | 0.262 | $0.397^{+0.021}_{-0.019}$ |
| | 0.300–0.375 | 0.336 | $0.398^{+0.022}_{-0.021}$ |
| | 0.375–0.450 | 0.409 | $0.376^{+0.026}_{-0.024}$ |
| | 0.450–0.625 | 0.502 | $0.392^{+0.033}_{-0.032}$ |
| 18–30 | 0.000–0.150 | 0.076 | $0.445^{+0.036}_{-0.032}$ |
| | 0.150–0.300 | 0.225 | $0.455^{+0.030}_{-0.027}$ |
| | 0.300–0.375 | 0.338 | $0.463^{+0.039}_{-0.036}$ |
| | 0.375–0.450 | 0.412 | $0.365^{+0.032}_{-0.030}$ |
| | 0.450–0.625 | 0.526 | $0.370^{+0.027}_{-0.025}$ |
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan1, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

Institute for Nuclear Problems, Minsk, Belarus
V. Drugakov, V. Mosevich, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
Beihang University, Beijing, China
W. Fang, X. Gao, L. Yuan

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Q. Wang

Tsinghua University, Beijing, China
M. Ahmad, Z. Hu, Y. Wang

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, D. Majumder, B. Mesic, M. Roguljic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, E. Salama

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ebataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tjuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Georgian Technical University, Tbilisi, Georgia
T. Torishvili

Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, D. Teysseir, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary
T. Csorgo, W.J. Metzger, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

Indian Institute of Technology Madras, Madras, India

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Jha, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, N. Sahoo, S. Sawant

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, A. Rizzia,b, G. Rolandia,c, S. Roy Chowdhurya,c, A. Scribanoa, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, N. Turini, A. Venturia, P.G. Verdinia

\textbf{INFN Sezione di Roma} a, \textbf{Sapienza Università di Roma} b, \textbf{Rome, Italy}

F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b, R. Tramontanoa,b

\textbf{INFN Sezione di Torino} a, \textbf{Università di Torino} b, \textbf{Torino, Italy}, \textbf{Università del Piemonte Orientale} c, \textbf{Novara, Italy}

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, J.R. González Fernándeza, B. Kiania,b, F. Leggera, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, G. Ortonaa, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Romeroa,b, M. Ruspaa,c, R. Salvaticoa,b, V. Solàa, A. Solanoa,b, D. Soldia,b, A. Staianoa, D. Trocinoa,b

\textbf{INFN Sezione di Trieste} a, \textbf{Università di Trieste} b, \textbf{Trieste, Italy}

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b, A. Zanettia

\textbf{Kyungpook National University, Daegu, Korea}

\textbf{Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea}
H. Kim, D.H. Moon

\textbf{Hanyang University, Seoul, Korea}
B. Francois, T.J. Kim, J. Park

\textbf{Korea University, Seoul, Korea}

\textbf{Kyung Hee University, Department of Physics}
J. Goh

\textbf{Sejong University, Seoul, Korea}
H.S. Kim

\textbf{Seoul National University, Seoul, Korea}

\textbf{University of Seoul, Seoul, Korea}

\textbf{Sungkyunkwan University, Suwon, Korea}
Y. Choi, C. Hwang, Y. Jeong, J. Lee, Y. Lee, I. Yu

\textbf{Riga Technical University, Riga, Latvia}
V. Veckalns34
Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
F. Mohamad Idris, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropesa Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarquen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler, P. Lujan

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I.M. Awan, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland
V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland
H. Bielkowska, M. Bluj, B. Boimska, M. Górska, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia
National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas, N. Suwonjandee

ukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
S. Cerci, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid
Baylor University, Waco, USA
A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA
Cornell University, Ithaca, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
Y.R. Joshi

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, T.Y. Ling, B.L. Winer

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg
Purdue University, West Lafayette, USA

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA
L. Ang, M.W. Arenton, P. Barria, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at Université Libre de Bruxelles, Bruxelles, Belgium
3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
4: Also at Universidade Estadual de Campinas, Campinas, Brazil
5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
6: Also at UFMS, Nova Andradina, Brazil
7: Also at Universidade Federal de Pelotas, Pelotas, Brazil
8: Also at University of Chinese Academy of Sciences, Beijing, China
9: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
10: Also at Joint Institute for Nuclear Research, Dubna, Russia
11: Also at Suez University, Suez, Egypt
12: Now at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Purdue University, West Lafayette, USA
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Tbilisi State University, Tbilisi, Georgia
17: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
20: Also at University of Hamburg, Hamburg, Germany
21: Also at Brandenburg University of Technology, Cottbus, Germany
22: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
23: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
24: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
25: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
26: Also at Institute of Physics, Bhubaneswar, India
27: Also at G.H.G. Khalsa College, Punjab, India
28: Also at Shoolini University, Solan, India
29: Also at University of Hyderabad, Hyderabad, India
30: Also at University of Visva-Bharati, Santiniketan, India
31: Now at INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
32: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
33: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
34: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
35: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
36: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
37: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
38: Also at Institute for Nuclear Research, Moscow, Russia
39: Now at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
41: Also at University of Florida, Gainesville, USA
42: Also at Imperial College, London, United Kingdom
43: Also at P.N. Lebedev Physical Institute, Moscow, Russia
44: Also at California Institute of Technology, Pasadena, USA
45: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
46: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
47: Also at Università degli Studi di Siena, Siena, Italy
48: Also at INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy, Pavia, Italy
49: Also at National and Kapodistrian University of Athens, Athens, Greece
50: Also at Universität Zürich, Zurich, Switzerland
51: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
52: Also at Burdur Mehmet Akif Ersoy University, BURDUR, Turkey
53: Also at Şırnak University, Sirnak, Turkey
54: Also at Tsinghua University, Beijing, China
55: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
56: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
57: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
58: Also at Mersin University, Mersin, Turkey
59: Also at Piri Reis University, Istanbul, Turkey
60: Also at Ozyegin University, Istanbul, Turkey
61: Also at Izmir Institute of Technology, Izmir, Turkey
62: Also at Bozok Universitetesi Rektörlüğü, Yozgat, Turkey
63: Also at Marmara University, Istanbul, Turkey
64: Also at Milli Savunma University, Istanbul, Turkey
65: Also at Kafkas University, Kars, Turkey
66: Also at Istanbul Bilgi University, Istanbul, Turkey
67: Also at Hacettepe University, Ankara, Turkey
68: Also at Adiyaman University, Adiyaman, Turkey
69: Also at Vrije Universiteit Brussel, Brussel, Belgium
70: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
71: Also at IPPP Durham University, Durham, United Kingdom
72: Also at Monash University, Faculty of Science, Clayton, Australia
73: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
74: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
75: Also at Bingol University, Bingöl, Turkey
76: Also at Georgian Technical University, Tbilisi, Georgia
77: Also at Sinop University, Sinop, Turkey
78: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
79: Also at Nanjing Normal University Department of Physics, Nanjing, China
80: Also at Texas A&M University at Qatar, Doha, Qatar
81: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea