$b \rightarrow s\ell^+\ell^-$ transitions at LHCb

Józef Borsuk

On behalf of the LHCb experiment

The Henryk Niewodniczański Institut of Nuclear Physics
Polish Academy of Sciences

University of Ferrara

09.01.2020

XXVI Cracow EPIPHANY Conference
on LHC Physics: Standard Model and Beyond
Outline

- LHCb detector
- Motivation
- $B^+ \rightarrow K^+ \mu^\pm e^{\mp}$
- $B^+ \rightarrow K^+ \ell^+ \ell^-$
- Summary
covers $2 < \eta < 5$ pseudorapidity range
- efficient particle identification
- calorimeters for measuring energy and position
- high-precision tracking system
- online event selection
Motivation

- SM is not complete (19 parameters, hierarchy problem, matter-antimatter asymmetry, etc.)
- Lepton flavour violation (LFV) in neutral sector, charged LFV negligible in SM
- Lepton universality (LU) tests in FCNC
- physics beyond the SM must exist
Flavour changing neutral currents in SM

$\bar{b} \rightarrow \bar{s} \ell^+ \ell^-$ transitions at LHCb
Flavour changing neutral currents - NP

$\bar{b} \rightarrow s \ell^+ \ell^-$ transitions at LHCb
Data sets recorded in 2011 and 2012 (pp collisions at 7 and 8 TeV)

Invariant-mass distributions of the
\[B^+ \rightarrow K^+ \mu^- e^+ \] and \[B^+ \rightarrow K^+ \mu^+ e^- \]

Signal model - sum of two Crystal Ball functions
Background - exponential function

Difference in $m(K^+ \ell^-)$ requirement.

Upper limits on the branching fractions of $B^+ \rightarrow K^+ \mu^- e^+$ and $B^+ \rightarrow K^+ \mu^+ e^-$

$$B(B^+ \rightarrow K^+ \mu^\pm e^\mp) = N(B^+ \rightarrow K^+ \mu^\pm e^\mp) \times \alpha$$ (1)

$$\alpha \equiv \frac{B(B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+ \mu^-))}{\epsilon(B^+ \rightarrow K^+ \mu^\pm e^\mp)} \times \frac{\epsilon(B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+ \mu^-))}{N(B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+ \mu^-))}$$ (2)

![Graphs showing CLs for $B(B^+ \rightarrow K^+ \mu^- e^+)$ and $B(B^+ \rightarrow K^+ \mu^+ e^-)$](image)

Data sets recorded in 2011 and 2012 (pp collisions at 7 and 8 TeV) and 2015-2016 (pp collisions at 13 TeV)

\[q^2 \text{ range:} \]
\[1.1 < q^2 < 6.0 \text{ GeV}^2/c^4 \]

Double ratio of the branching fractions:

\[R_K = \frac{\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \rightarrow J/\psi(\rightarrow \mu^+ \mu^-)K^+)}{\mathcal{B}(B^+ \rightarrow K^+ e^+ e^-) / \mathcal{B}(B^+ \rightarrow J/\psi(\rightarrow e^+ e^-)K^+)} \quad (3) \]

$B^+ \to K^+ \mu^+ \mu^-$ and $B^+ \to K^+ e^+ e^-$

Likelihood fits to the invariant mass distributions for electron and muon candidates for nonresonant and resonant decays.

Electron-mode signal mass shapes - sum of three distributions.
R_K for $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$

$$R_K = \frac{\mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \rightarrow J/\psi(\rightarrow \mu^+ \mu^-)K^+)} / \frac{\mathcal{B}(B^+ \rightarrow K^+ e^+ e^-)}{\mathcal{B}(B^+ \rightarrow J/\psi(\rightarrow e^+ e^-)K^+)}$$

(4)

$$R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$$

Likelihood approx. Gaussian in $0.75 < R_K < 0.95$
Consistent with the SM expectation at 2.5 σ.

Recent results of $b \to s \ell^+ \ell^-$ transitions have been shown:

\[B^+ \to K^+ \mu^\pm e^\mp \]
- upper limits on the branching fractions were obtained
- results improve previous limits on the decays
- impose strong constraints on the extensions to the SM

\[B^+ \to K^+ \ell^+ \ell^- \]
- R_K ratio was measured in central q^2 range
- most precise measurements of R_K to date
- compatible with the SM expectation at 2.5 σ

Big chance for more precise measurements with upgraded LHCb detector in near future.
Thank you for your attention