Longitudinal flow decorrelations in Xe+Xe collisions at $\sqrt{s_{NN}} = 5.44$ TeV with the ATLAS detector

The ATLAS Collaboration

The first measurement of longitudinal decorrelations of harmonic flow amplitudes v_n for $n = 2, 3$ and 4 in Xe+Xe collisions at $\sqrt{s_{NN}} = 5.44$ TeV is obtained using $3 \mu b^{-1}$ of data with the ATLAS detector at the LHC. The decorrelation signal for v_3 and v_4 is found to be nearly independent of collision centrality and transverse momentum (p_T) requirements on final-state particles, but for v_2 a strong centrality and p_T dependence is seen. When compared with the results from Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, the longitudinal decorrelation signal in mid-central Xe+Xe collisions is found to be larger for v_2, but smaller for v_3. Current hydrodynamic models reproduce the ratios of the v_n measured in Xe+Xe collisions to those in Pb+Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe+Xe and Pb+Pb. These results provide new insights into the longitudinal structure of the initial-state geometry in heavy-ion collisions.
High-energy heavy-ion collisions create a new state of matter known as a quark–gluon plasma (QGP), whose space-time dynamics is well described by relativistic viscous hydrodynamic models [1–3]. During its expansion, the large pressure gradients of the QGP convert the spatial anisotropies in the initial-state geometry into momentum anisotropies of the finial-state particles. Such momentum anisotropies are often characterized by a Fourier expansion of particle density in the azimuthal angle ϕ, $dN/d\phi \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos n(\phi - \Phi_n)$, where v_n and Φ_n are the magnitude and phase of the n^{th}-order anisotropy. Extensive studies of v_n and their event-by-event fluctuations in the last decade [4–14] have provided strong constraints on the properties of the QGP and the initial-state geometry [15–20]. Most of these studies, however, assume that the initial condition and dynamic evolution of the QGP are boost-invariant in the longitudinal direction. Recently, LHC experiments made the first observation [21, 22] of “flow decorrelations” in Pb+Pb collisions, which show that, even in a given event, v_n and Φ_n can fluctuate along the longitudinal direction. Hydrodynamic model calculations [23–28] show that such flow decorrelations are driven mostly by primordial longitudinal structure in the initial-state geometry. Testing how flow decorrelations vary with the size of the collision system can improve our knowledge about the early-time dynamics of the QGP.

This Letter investigates the system-size dependence of longitudinal decorrelations of v_2, v_3, v_4 by performing measurements in 129Xe+129Xe collisions and comparing them with 208Pb+208Pb collisions. Recent measurements [29–31] show that the v_n exhibit modest differences (<10–20%) between these two systems as a function of centrality, except in the most central collisions where the difference for v_2 is significantly larger. Model calculations [32, 33] suggest that these differences are compatible with the expected ordering of the initial eccentricities and roles of viscous effects in the two systems. It is of great interest to study whether the relative strength of the v_n decorrelation between the two systems follows that of the inclusive v_n, which should provide insight into the nature of the initial sources responsible for both the transverse harmonic flow and its longitudinal fluctuations.

The measurement is performed using the ATLAS inner detector (ID) and forward calorimeters (FCal) along with the trigger and data acquisition system [34, 35]. The ID measures charged particles over a pseudorapidity 1 range $|\eta| < 2.5$ using a combination of silicon pixel detectors, silicon microstrip detectors (SCT), and a straw-tube transition radiation tracker, all immersed in a 2 T axial magnetic field [36–38]. The FCal measures the sum of the transverse energy $\sum E_T$ over $3.2 < |\eta| < 4.9$ to determine the event centrality, and uses copper and tungsten absorbers with liquid argon as the active medium. The FCal towers consist of calorimeter cells grouped into regions in $\Delta \eta \times \Delta \phi$ of approximately 0.1×0.1. The ATLAS trigger system [35] consists of a level-1 (L1) trigger implemented using a combination of dedicated electronics and programmable logic, and a software based high-level trigger.

This analysis uses $3 \mu b^{-1}$ of $\sqrt{s_{NN}} = 5.44$ TeV Xe+Xe data collected in 2017. The events are selected by requiring the total transverse energy deposited in the calorimeters over $|\eta| < 4.9$, as estimated in the L1 trigger system, to be larger than 4 GeV. In the offline analysis, the z-position of the primary vertex [39] of each event is required to be within 100 mm of the nominal IP. Events containing more than one inelastic interaction (pileup) are suppressed by exploiting the correlation between the $\sum E_T$ measured in the FCal and the number of tracks associated with a primary vertex. The fraction of pileup after event selection is estimated to be less than 0.2%. The event centrality classification is based on the $\sum E_T$ in the FCal [40]. A Glauber model [41, 42] is used to determine the mapping between $\sum E_T$ in the FCal and the centrality

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (ρ, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
where

\[\langle \eta \rangle \] runs over charged particles (for the ID) or towers (for the FCal) in a specified weakly on the centrality; a change of about 3% over the full centrality range is observed for \(p_T \).

The longitudinal flow decorrelations are studied using products of flow vectors in the ID, \(q_n(\eta) \), and the FCal, \(q_n(\eta_{\text{ref}}) \) [21], averaged over events in a given centrality interval,

\[r_{\eta\eta}(\eta) = \frac{\langle q_n(\eta) q_n(\eta_{\text{ref}}) \rangle}{\langle q_n(\eta) q_n(\eta_{\text{ref}}) \rangle} = \frac{\langle \phi_n(\eta) \rangle}{\langle \phi_n(\eta_{\text{ref}}) \rangle} \cos n[\Phi_n(\eta) - \Phi_n(\eta_{\text{ref}})], \tag{2} \]

where \(\eta_{\text{ref}} \) is a reference pseudorapidity range in the FCal, common to both the numerator and the denominator. The \(r_{\eta\eta} \) correlator defined this way quantifies the decorrelation between \(\eta \) and \(-\eta \) [21, 49].

Three reference \(\eta \) ranges, 3.2 < \(\eta_{\text{ref}} \) < 4.0, 4.0 < \(\eta_{\text{ref}} \) < 4.9, and 3.2 < \(\eta_{\text{ref}} \) < 4.9 are used. Since \(\langle q_n(\eta) q_n(\eta_{\text{ref}}) \rangle = \langle q_n(\eta) q_n(\eta_{\text{ref}}) \rangle \) for a symmetric system, the correlator is further symmetrized to enhance the statistics,

\[r_{\eta\eta}(\eta) = \frac{\langle q_n(\eta) q_n(\eta_{\text{ref}}) + q_n(\eta) q_n(\eta_{\text{ref}}) \rangle}{\langle q_n(\eta) q_n(\eta_{\text{ref}}) + q_n(\eta) q_n(\eta_{\text{ref}}) \rangle}. \]
The symmetrization procedure also allows further cancellation of any differences between \(\eta \) and \(-\eta\) in the detector performance.

If flow harmonics for two-particle correlation from two different \(\eta \) factorize into single-particle harmonics, i.e. \(\langle v_n(\eta_1)v_n(\eta_2) \rangle^2 = \langle v_n(\eta_1)^2 \rangle \langle v_n(\eta_2)^2 \rangle \), then it is expected that \(r_{n\eta}(\eta) = 1 \). Therefore, a value of \(r_{n\eta}(\eta) \) incompatible with unity implies a factorization-breaking effect due to longitudinal flow decorrelations. The deviation of \(r_{n\eta} \) from unity can be parameterized with a linear function, \(r_{n\eta}(\eta) = 1 - 2F_n\eta \). The slope parameter \(F_n \) is obtained via a simple linear-regression [22],

\[
F_n = \frac{\sum_i (1 - r_{n\eta}(\eta_i))\eta_i}{2 \sum_i \eta_i^2},
\]

where the sum runs over all \(r_{n\eta} \) data points as a function of \(\eta \). If \(r_{n\eta} \) is a linear function in \(\eta \), the linear-regression is equivalent to a linear fit, but it is well defined even if \(r_{n\eta} \) has nonlinear behavior.

Systematic uncertainties in \(r_{n\eta} \) and the slope parameter \(F_n \) arise from the uncertainties in the reconstruction and track selection efficiency, the acceptance reweighting procedure and the centrality definition. Most of these enter the analysis through the particle weights in Eq. (1). The systematic uncertainties are estimated by varying different aspects of the analysis, recalculating \(r_{n\eta} \) and \(F_n \) and comparing them with the nominal values. The systematic uncertainty associated with fake tracks is estimated by loosening the requirements on the transverse and longitudinal impact parameters [31]; the resulting changes are 1–2% for \(F_2 \), 1–4% for \(F_3 \), and 1–9% for \(F_4 \). The uncertainty associated with the efficiency \(\epsilon(p_T, \eta) \) is evaluated by varying the tracking efficiency up and down within its uncertainties; the influence is less than 1% for \(F_n \). The effect of reweighting to account for nonuniformity in the detector azimuthal acceptance is studied by setting \(d(\eta, \phi) = 1 \) and repeating the analysis. The change is found to be 0.6–2% for \(F_2 \) and \(F_3 \), and 2–7% for \(F_4 \). The uncertainty due to the centrality definition is estimated by varying the mapping between \(\sum E_T \) and centrality percentiles; the influence is 0.5–4% for \(F_2 \) and \(F_3 \), and 0.5–8% for \(F_4 \). In most of the cases, the total systematic uncertainties are smaller than the corresponding statistical uncertainties. Finally, HIJING events with azimuthal anisotropy imposed according to measured \(v_n \) but without decorrelations are used to cross-check the detector performance: the \(q_n \) are calculated using both the generated and reconstructed tracks, and the resulting correlators are compared and found to be consistent within their statistical uncertainties.

Figure 1 shows the measured \(r_{n\eta}(\eta) \) for \(n = 2, 3 \) and 4 in six centrality intervals, quantifying the flow decorrelation between \(\eta \) and \(-\eta\) according to Eq. (2). The \(r_{n\eta} \) values show an approximately linear decrease with \(\eta \), implying stronger flow decorrelation at large \(\eta \). The magnitudes of decorrelation for \(r_{3\eta} \) and \(r_{4\eta} \) are significantly larger than that for \(r_{2\eta} \). The range \(4.0 < |\eta_{rel}| < 4.9 \) chosen for \(r_{3\eta} \) is different from the range \(3.2 < |\eta_{rel}| < 4.9 \) used for \(r_{3\eta} \) and \(r_{4\eta} \) in order to reduce sensitivity to nonflow correlations; this is further discussed below.

The slope parameter \(F_n \) is calculated from \(r_{n\eta} \) via Eq. (3) and summarized in Figure 2 as a function of centrality percentile. The left panels show the \(F_n \) for three \(|\eta_{rel}| \) ranges and right panels show the \(F_n \) for three \(p_T \) ranges. Within uncertainties, \(F_3 \) and \(F_4 \) show very weak dependence on centrality. The \(F_2 \) values, on the other hand, show a strong centrality dependence: they are smallest in the 20–30% centrality interval and larger towards more-central or more-peripheral collisions. This strong centrality dependence is related to the fact that \(v_2 \) is dominated by the average elliptic geometry in mid-central collisions and therefore is less affected by decorrelations, while it is dominated by fluctuation-driven collision geometries in central and peripheral collisions [25, 26].
To gain insights into the system-size dependence of the longitudinal fluctuations, Figure 3 compares the F_n from the Xe+Xe system with those obtained from the Pb+Pb system at $\sqrt{s_{NN}} = 5.02$ TeV from Ref. [22] as a function of centrality percentile (left column) or N_{part} (right column). Since F_n depends only very weakly on $\sqrt{s_{NN}}$ [22], the 8% difference in $\sqrt{s_{NN}}$ between the two systems is expected to play negligible role for this comparison. For both systems, F_2 shows a strong dependence on centrality percentile and N_{part}, while F_3 and F_4 each show rather weak dependence. In the noncentral collisions (centrality percentiles $\geq 30\%$ or $N_{\text{part}} \leq 80$), the F_2 for the two systems agree only as a function of N_{part}, while F_3 agree as a function of either centrality percentiles or N_{part}. When compared as a function of centrality percentile, both F_2 and F_3 agree in the most central collisions, but they do not agree as a function of N_{part} in the large N_{part} region. In
The mid-central collisions, F_2 is much larger in Xe+Xe than Pb+Pb collisions, while an opposite trend is observed for F_3. The F_4 values have rather weak dependence on both centrality percentile and N_{part}, and they agree between the two systems. The data are also compared with results from a hydrodynamic model with longitudinal fluctuations included [51, 52]. This model describes quantitatively the behavior of F_2 and F_4 in mid-central collisions, but fails to describe the magnitude of F_3 and the splitting between the two systems.

To help further understand the relationship between the transverse harmonic flow and its longitudinal fluctuations, Figure 4 compares the ratios of flow decorrelation $F_n^{\text{Xe}+\text{Xe}} / F_n^{\text{Pb}+\text{Pb}}$ (F_n-ratios) for $0.5 < p_T < 3$ GeV with ratios of flow harmonics $v_n^{\text{Xe}+\text{Xe}} / v_n^{\text{Pb}+\text{Pb}}$ (v_n-ratios) for $0.5 < p_T < 5$ GeV from Ref. [31] as a function of centrality percentile. While the v_n-ratios all decrease with centrality percentile, the F_n-ratios
Figure 3: The F_n compared between Xe+Xe and Pb+Pb [22] collisions as a function of centrality percentiles (left) and N_{part} (right) for $n = 2$ (top row), $n = 3$ (middle row) and $n = 4$ (bottom row). The error bars and shaded boxes on the data represent statistical and systematic uncertainties, respectively. The results from a hydrodynamic model [51, 52] are shown as solid lines (Xe+Xe) and dashed lines (Pb+Pb) with the vertical error bars denoting statistical uncertainty of the model predictions.

increase with centrality percentile; this opposite trend implies that when the ratio of average flow is larger, the ratio of its relative fluctuations in the longitudinal direction is smaller and vice versa. Beyond this overall opposite trend, there are other contrasting features between the two types of ratios. The F_2-ratio is always above one, while the v_2-ratio decreases to below one around 10–20% centrality; the F_2-ratio is larger than the v_2-ratio except in the 0–5% centrality interval where the v_2-ratio is enhanced due to the deformation of the Xe nucleus [32]. The differences between the F_3-ratio and the v_3-ratio are smaller, but with different centrality dependencies: while the v_3-ratio decreases nearly linearly with centrality percentile, the F_3-ratio first decreases and then increases as a function of centrality percentile. The F_4-ratio has larger uncertainties, but shows much stronger centrality dependence compared with the v_4-ratio. While
Figure 4: The ratios F_{XeXe}^n / F_{PbPb}^n from data [22] (solid symbols) and model [51, 52] (solid lines) and v_{XeXe}^n / v_{PbPb}^n from data [31] (open symbols) and model [32] (dashed lines) as a function of centrality for $n = 2$ (left), $n = 3$ (middle panel) and $n = 4$ (right), respectively. The error bars and shaded boxes on the data represent statistical and systematic uncertainties, respectively. The vertical error bars on the theory calculations represent the statistical uncertainties.

the hydrodynamic model from Ref. [32] describes quantitatively the trend of the v_n-ratios, the agreement with the F_n-ratios is worse and in particular the model [51, 52] overestimates the F_2- and F_3-ratios for centrality percentiles beyond 20–30%. This comparison suggests that the longitudinal structure of the initial geometry may have a different system-size dependence from its transverse structure.

In summary, ATLAS presents the first measurement of longitudinal decorrelations for harmonic flow amplitudes v_n in Xe+Xe collisions at $\sqrt{s_{NN}} = 5.44$ TeV, based on 3 μb$^{-1}$ of data collected at the LHC. The decorrelation signal increases approximately linearly as a function of the η separation between the two particles. The slope of this dependence is nearly independent of centrality percentile and p_T for $n = 3$ and 4. For $n = 2$, the effect is smallest in mid-central collisions and increases for more-central or more-peripheral collisions, and the slope also depends on p_T. A comparison with Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV shows that the slope in most of the centrality range is larger in Xe+Xe collisions than in Pb+Pb collisions for $n = 2$, while the opposite trend is observed for $n = 3$. This reverse ordering was not observed for the ratios of v_2 and v_3 harmonic flows between the two collision systems. Hydrodynamic models are found to describe the ratios of v_n between Xe+Xe and Pb+Pb, but fail to describe most of the magnitudes and trends of the ratios of the v_n decorrelations between Xe+Xe and Pb+Pb. This suggests that models tuned to describe the transverse dynamics may not necessarily describe the longitudinal structure of the initial-state geometry. System-size dependence of flow decorrelations provides new insights into the dynamics of v_n in the longitudinal direction. This measurement provides important input for the complete modeling of the three-dimensional initial conditions of heavy-ion collisions used in hydrodynamic models.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; FWF, BMWF, Austria; ANAS, Azerbaijan; STSC, Belarus; CNPq, FAPESP, Brazil; NSERC, CFI, NRC, Canada; CERN, CERN; CONICYT, Chile; CAS, NSFC, MOST, China; COLCIENCIAS, Colombia; VSC CR, MSMT CR, MPO CR, Czech Republic; DNSRC, DNRF, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France;
SRNSFG, Georgia; MPG, HGF, BMBF, Germany; GSRT, Greece; RGC, Hong Kong SAR, Hong Kong China; Benoziyo Center, ISF, Israel; INFN, Italy; JSPS, MEXT, Japan; JINR, JINR; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNI SW, NCN, Poland; FCT, Portugal; MNE/IFA, Romania; NRC KI, MES of Russia, Russia Federation; MESTD, Serbia; MSSR, Slovakia; ARRS, MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Wallenberg Foundation, Sweden; Cantons of Bern and Geneva, SNSF, SERI, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, NSF, United states of America. In addition, individual groups and members have received support from CRC, Compute Canada, Canarie, BCKDF, Canada; Marie Skłodowska-Curie, COST, ERDF, ERC, Horizon 2020, European Union; ANR, Investissements d’Avenir Labex and Idex, France; AvH, DFG, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF, GIF, Israel; PROMETEO Programme Generalitat Valenciana, CERCA Generalitat de Catalunya, Spain; Leverhulme Trust, The Royal Society, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [53].

References

2 Physics Department, SUNY Albany, Albany NY; United States of America.
3 Department of Physics, University of Alberta, Edmonton AB; Canada.
4\(^{(a)}\)Department of Physics, Ankara University, Ankara;\(^{(b)}\)Istanbul Aydin University, Istanbul;\(^{(c)}\)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5 LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7 Department of Physics, University of Arizona, Tucson AZ; United States of America.
8 Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9 Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10 Physics Department, National Technical University of Athens, Zografou; Greece.
11 Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12\(^{(a)}\)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul;\(^{(b)}\)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul;\(^{(c)}\)Department of Physics, Bogazici University, Istanbul;\(^{(d)}\)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13 Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15\(^{(a)}\)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;\(^{(b)}\)Physics Department, Tsinghua University, Beijing;\(^{(c)}\)Department of Physics, Nanjing University, Nanjing;\(^{(d)}\)University of Chinese Academy of Science (UCAS), Beijing; China.
16 Institute of Physics, University of Belgrade, Belgrade; Serbia.
17 Department for Physics and Technology, University of Bergen, Bergen; Norway.
18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19 Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22 Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogota; Colombia.
23\(^{(a)}\)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica;\(^{(b)}\)INFN Sezione di Bologna; Italy.
24 Physikalisches Institut, Universität Bonn, Bonn; Germany.
25 Department of Physics, Boston University, Boston MA; United States of America.
26 Department of Physics, Brandeis University, Waltham MA; United States of America.
27\(^{(a)}\)Transilvania University of Brasov, Brasov;\(^{(b)}\)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest;\(^{(c)}\)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi;\(^{(d)}\)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca;\(^{(e)}\)University Politehnica Bucharest, Bucharest;\(^{(f)}\)West University in Timisoara, Timisoara; Romania.
28\(^{(a)}\)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava;\(^{(b)}\)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31 California State University, CA; United States of America.
32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33\(^{(a)}\)Department of Physics, University of Cape Town, Cape Town;\(^{(b)}\)Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg;\(^{(c)}\)School of Physics, University of the
Witwatersrand, Johannesburg; South Africa.

34Department of Physics, Carleton University, Ottawa ON; Canada.

35(a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b)Faculté des Sciences, Université Ibn-Tofail, Kénitra; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e)Faculté des sciences, Université Mohammed V, Rabat; Morocco.

36CERN, Geneva; Switzerland.

37Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.

38LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.

39Nevis Laboratory, Columbia University, Irvington NY; United States of America.

40Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.

41(a)Dipartimento di Fisica, Università della Calabria, Rende; (b)INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.

42Physics Department, Southern Methodist University, Dallas TX; United States of America.

43Physics Department, University of Texas at Dallas, Richardson TX; United States of America.

44National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.

45(a)Department of Physics, Stockholm University; (b)Oskar Klein Centre, Stockholm; Sweden.

46Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

47Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.

48Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

49Department of Physics, Duke University, Durham NC; United States of America.

50SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

51INFN e Laboratori Nazionali di Frascati, Frascati; Italy.

52Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

53II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.

54Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

55(a)Department of Physics, University of Genova, Genova; (b)INFN Sezione di Genova; Italy.

56II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany.

57SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.

58LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.

59Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.

60(a)Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b)Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (c)School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; (d)Tsung-Dao Lee Institute, Shanghai; China.

61(a)Kirschhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.

62Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.

63(a)Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b)Department of Physics, University of Hong Kong, Hong Kong; (c)Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

64Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.

65Department of Physics, Indiana University, Bloomington IN; United States of America.

66(a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b)ICTP, Trieste; (c)Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.
106 Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
107 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.
108 Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.
109 Group of Particle Physics, University of Montreal, Montreal QC; Canada.
110 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.
111 National Research Nuclear University MEPhI, Moscow; Russia.
112 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.
113 Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.
114 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.
115 Nagasaki Institute of Applied Science, Nagasaki; Japan.
116 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.
117 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.
118 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.
119 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.
120 Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
121(a) Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; (b) Novosibirsk State University Novosibirsk; Russia.
122 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.
123 Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow; Russia.
124 Department of Physics, New York University, New York NY; United States of America.
125 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.
126 Ohio State University, Columbus OH; United States of America.
127 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
128 Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
129 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc; Czech Republic.
130 Center for High Energy Physics, University of Oregon, Eugene OR; United States of America.
131 LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
132 Graduate School of Science, Osaka University, Osaka; Japan.
133 Department of Physics, University of Oslo, Oslo; Norway.
134 Department of Physics, Oxford University, Oxford; United Kingdom.
135 LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris; France.
136 Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
137 Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.
138 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
139(a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Departamento de Física, Universidade de Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos, Universidad de
Granada, Granada (Spain);\(^{(g)}\) Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica;\(^{(h)}\) Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.

Czech Technical University in Prague, Prague; Czech Republic.

Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.

Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.

Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;\(^{(a)}\) Universidad Andres Bello, Department of Physics, Santiago;\(^{(b)}\) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.

Department of Physics, University of Washington, Seattle WA; United States of America.

Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.

Department of Physics, Shinshu University, Nagano; Japan.

Department Physik, Universität Siegen, Siegen; Germany.

Department of Physics, Simon Fraser University, Burnaby BC; Canada.

SLAC National Accelerator Laboratory, Stanford CA; United States of America.

Physics Department, Royal Institute of Technology, Stockholm; Sweden.

Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.

Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.

School of Physics, University of Sydney, Sydney; Australia.

Institute of Physics, Academia Sinica, Taipei; Taiwan.

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;\(^{(a)}\) High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.

Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.

Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.

Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.

International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.

Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.

Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.

Tomsk State University, Tomsk; Russia.

Department of Physics, University of Toronto, Toronto ON; Canada.

TRIUMF, Vancouver BC;\(^{(a)}\) Department of Physics and Astronomy, York University, Toronto ON; Canada.

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.

Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.

Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.

Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.

Department of Physics, University of Illinois, Urbana IL; United States of America.

Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.

Department of Physics, University of British Columbia, Vancouver BC; Canada.
ae Also at Joint Institute for Nuclear Research, Dubna; Russia.
af Also at LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay; France.
ag Also at Louisiana Tech University, Ruston LA; United States of America.
ah Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
a i Also at National Research Nuclear University MEPhI, Moscow; Russia.
a j Also at Physics Department, An-Najah National University, Nablus; Palestine.
ak Also at Physics Dept, University of South Africa, Pretoria; South Africa.
al Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.
am Also at The City College of New York, New York NY; United States of America.
an Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.
ao Also at TRIUMF, Vancouver BC; Canada.
ap Also at Universita di Napoli Parthenope, Napoli; Italy.
* Deceased